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Abbreviations

BN Bayesian Network

CPT Conditional Probability Table

DAG Directed Acyclic Graph

FPS Failure Path Sequence

GMPE Ground-Motion Prediction Equation
MCS Minimum Cut Set

MLS Minimum Link Set

PGA Peak Ground Acceleration

PGV Peak Ground Velocity

SA Spectral Acceleration

SCL Single Connectivity Loss

SPS Survival Path Sequence

TAZ Traffic Analysis Zone
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Executive Summary

This report conducts a quantitative analysis of the effect of various uncertainty sources on the final
risk measures of a given infrastructure system, through the development of a Bayesian Network that
is evaluated for different uncertainty assumptions.

First, a qualitative description of all potential uncertainty sources is proposed, through a
classification between aleatory and epistemic uncertainties, at each step of the risk analysis process
(i.e. hazard, physical damage and losses). This analysis is followed by a discussion on the common
ways to propagate uncertainties from the input variables to the system loss measures. Bayesian
Networks are identified as a relevant approach in the context of infrastructure systems, and some
theoretical background is provided on how to model component failures and system performance
with the Bayesian Network theory (Pearl, 1988).

Finally, the Bayesian Network method is applied to a virtual proof-of-concept example: a simple road
network connection with several points of interest is considered, while being exposed to flood,
ground failure and seismic hazard. The uncertainties are taken into account by the use of realistic
physical models, while the effect of each assumption can be monitored at the level of the system
performance indicator (i.e. single connectivity loss of the road network). Finally, it is shown that the
Bayesian Network approach can be successfully applied to perform a multi-risk analysis that
accounts for interactions at the fragility level.
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1.0 INTRODUCTION

Risk analyses are of probabilistic nature by definition, therefore uncertainty needs to be integrated
into all the steps of the risk assessment process, namely the modelling of the hazard event(s), the
characterisation of the exposure and the response of the vulnerable exposed infrastructure. To this
end, the probabilistic hazard and fragility models that have been proposed and developed in
INFRARISK deliverables D3.1 (D’Ayala et al., 2014) and D3.2 (D’Ayala et al., 2015) respectively are
used to identify the various sources of uncertainty in the single risk analyses. Following the common
classification between aleatory and epistemic uncertainties, it is then possible to find out which
uncertainty source contributes the most to the overall variability of the loss distribution at the level
of the infrastructure system. Such studies have been recently carried out in order to compare
uncertainties between single risk analyses from different hazard types, as shown by Rohmer (2013)
in the frame of the FP7-funded European project MATRIX (2010-2013).

While aleatory uncertainties are commonly viewed as contributing to the true randomness of the
studied physical phenomenon, they are mostly considered as irreducible. Conversely, epistemic
uncertainties have received more attention, since their characterisation and quantification will
provide indications on which steps of the risk assessment process to focus modelling efforts, in order
to obtain the greatest improvement in accuracy for the risk curve. For instance, statistical tools such
as variance-based sensitivity analysis have been used by Rohmer et al. (2014) or Gehl et al. (2013) to
qguantify the effects of epistemic uncertainties on the seismic risk assessment of buildings. In terms
of uncertainty representation, Rohmer (2013) has proposed to represent aleatory uncertainties
through the shape of the risk curve (i.e. annual probability of exceedance of a given loss level), while
epistemic uncertainties may be represented by confidence intervals around the median curve (see
example in Figure 1).
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Figure 1: Representation of aleatory and epistemic uncertainties on a risk curve
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A similar distinction has been introduced by Abrahamson and Bommer (2005) in the case of seismic
hazard assessment; the authors claim that the inherent variability considered directly in the hazard
computation (i.e. aleatory variability) leads to the shape of the hazard curve, while the epistemic
uncertainty leads to alternative hazard curves. However, a caveat should be added to this
distinction, since the strict Bayesians argue that all uncertainty is epistemic, in the sense that what
appears as a physical property of randomness can always be viewed as an uncertain state of
knowledge.

In the present report, uncertainty sources are qualitatively identified for the different hazard types
considered in INFRARISK, i.e. earthquakes, landslides and floods (Section 2.1). After uncertainty
propagation methods are briefly summarized, the potential of Bayesian Networks for infrastructure
risk assessment is discussed and suitable Bayesian Network (BN) structures are detailed (Section
2.2).

Once the theoretical concepts have been described, they are applied to a simple hypothetical case-
study, composed of a road network exposed to floods, earthquakes and earthquake-triggered
landslides (Section 3). Even though the proposed case-study is virtual, input data and corresponding
models are kept as realistic as possible, in order to obtain an accurate view of the effect of the
difference uncertainty sources. The proposed BN structure is finally applied for different
assumptions, either for single risk analyses or for a multi-risk analysis with interactions between
earthquake and flood hazard at the fragility level.

© The INFRARISK Consortium 2
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2.0 THEORETICAL BACKGROUND

2.1 Sources of uncertainty in risk analyses

As part of the MATRIX project, an extensive study of uncertainties by Rohmer (2013) led to a
taxonomy of uncertainty sources, as summarized in Error! Reference source not found.. The
uncertainty sources follow the common aleatory/epistemic classification, while further distinctions
are made depending on the reason for the lack of knowledge (i.e. data-, parameter-, model- or
science-related).

Type of uncertainty Main underlying causes
Aleatory uncertainty Inherent variability (temporal and/or spatial)
Epistemic uncertainty | Measurement errors, representativeness of the samples, bias in the
—data measurement process
Epistemic uncertainty | Incompleteness and imprecision of observations, experts’ judgments

— parameter (vagueness, conflicting views)
Epistemic uncertainty | Structure, several choices of “good” models
— model

Epistemic uncertainty | Ignorance, indeterminacy, immeasurability, conflicting views
— scientific

Table 1: Taxonomy of uncertainty sources, according to Rohmer (2013).

This classification is used in the following sub-sections in order to enumerate the most common
uncertainty sources that should be taken into account in risk analyses.

2.1.1 Uncertainties related to hazard assessment

Different uncertainty sources may be identified based on the type of hazard considered, even
though a similar structure can be observed (e.g. uncertainties due to the definition of the source
event, model or parameter uncertainties in the estimation of the hazard intensities, etc.). They are
summarized in Table 2 to Table 4, using mainly the inventory proposed by Rohmer (2013).

© The INFRARISK Consortium 3
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Source of uncertainty Type Description
Estimation of design rainfall | epistemic/data - Design rainfall event are usually estimated
event epistemic/parameter | through historical rainfall records, which

may be subject to measurement errors or
incomplete time series.

Occurrence of rainfall event | aleatory Dependence on aleatory meteorological
patterns.

Variation of river geometry aleatory Aleatory distribution of riverbed

over time/space parameters, which may evolve with time.

Selection of models to epistemic/model Flow discharge may be estimated through

estimate flood propagation a wide range of methods and prediction
models.

Estimation of model epistemic/parameter | Physical parameters feeding the models

parameters (e.g. riverbed gradient, surface roughness,

catchment area, etc.) are usually
incompletely characterized.

Correlation of main channels | aleatory The flow discharge at a given point may
and tributary flows depend on the flow upstream, and on
different (and usually correlated) rainfall
events that may affect different tributary
streams and different catchment areas.

Table 2: Main sources of uncertainty involved in the flood hazard assessment.

© The INFRARISK Consortium 4
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Source of uncertainty Type Description

Estimation of design epistemic/data - Design earthquake events are usually

earthquake event (e.g. epistemic/parameter | estimated through historical seismicity,

parameters of Gutenberg- which may be subject to measurement

Richter law) errors or incomplete time series.

Occurrence of earthquake aleatory Dependence on aleatory fault rupture

event mechanisms.

Choice of GMPEs epistemic/model Seismic intensity may be predicted through

a wide range of valid ground motion
prediction equations.

Dispersion of GMPE (intra- aleatory The GMPE provides a distribution of the
and inter- event variability) expected seismic intensity, whose standard
deviation is a combination of intra- and
inter-event variability (site-to-site and
earthquake-to-earthquake variability,
respectively).

Choice of truncation level for | epistemic/model An unbounded aleatory uncertainty model
GMPE dispersion for the GMPE may result in unrealistic
values when low-probability high-
consequence events are investigated. A
truncated aleatory distribution is therefore
a more common approach.

Spatial correlation between | aleatory The spatial correlation of the ground
hazard intensities motion field is built by using a correlation
distance and the intra-event variability. It is
an essential component of the
infrastructure risk analysis.

Estimation of the site epistemic/data - Amplified seismic intensities due to site
amplification factor for a epistemic/parameter | effects are estimated through the study of
specific site - epistemic/model the site of interest (e.g. soil class, measure

of shear wave velocity, etc.).

Table 3: Main sources of uncertainty involved in the seismic hazard assessment.
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Source of uncertainty Type

Description

Digital Elevation Model epistemic/data -

epistemic/parameter

The quality of the DEM depends on the
level of resolution and the way data has
been acquired.

Failure surface depth epistemic/model -

epistemic/parameter

The depth of the failure surface is an input
parameter for the hazard assessment. How
this parameter is defined and used
depends also on the type of model used.

Soil parameters

epistemic/parameter

Parameters such as soil unit weight, soil
cohesion or angle of friction may be
incompletely characterized.

Slope stability model epistemic/model

The type of landslide model considered has
an influence on the expected
displacements (e.g. infinite slope mode vs
circular slope failure).

Soil saturation ratio aleatory -

epistemic/data -

- epistemic/model

epistemic/parameter

The estimation of the soil saturation is
usually a complex process which is
dependent on many factors (e.g. climate,
water table location, rain pattern, etc.).

Table 4: Main sources of uncertainty involved in the landslide hazard assessment.

2.1.2 Uncertainties related to damage assessment

Uncertainty sources that are involved in the estimation of physical damage may be considered as

common to all hazard types, thanks to the harmonization tasks performed in INFRARISK deliverables
D3.1 (D’Ayala et al., 2014) and D3.2 (D’Ayala et al., 2015), i.e. Hazard Distribution Matrix and Fragility

Functions Matrix. They are summarized in Table 5.

Source of uncertainty Type Description

Characterization of the epistemic/data | Parameters relative to the physical assets cannot

elements at risk (geometry, - epistemic/ always be accurately characterized, either due to

structural properties, etc.) parameter imprecise measurements or lack of census data.

Choice of fragility curves epistemic/ A wide range of fragility curves may be applied to
model a given element, depending on the derivation

method, the modelling assumptions, etc.

Dispersion of fragility curve aleatory The standard deviation inherent to a fragility

curve represents the aleatory uncertainty that
may be due to the hazard representation or the
physical process leading to the failure of the
element.

Choice of intensity measure | epistemic/ Different intensity measures may be chosen as
model hazard descriptors, leading to the choice of

different fragility curves or hazard prediction
models.

Definition of damage states | aleatory - Physical damage states are usually defined with a
epistemic/ qualitative damage scale, while quantitative
model physical measures may be used to actually

determine whether the element has reached the
damage state or not.

Table 5: Main sources of uncertainty involved in the physical damage assessment.

© The INFRARISK Consortium
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2.1.3 Uncertainties related to loss assessment

Uncertainty sources that are involved in the estimation of functional losses may be considered as

common to all hazard types, thanks to the harmonization tasks performed in INFRARISK deliverables
D3.1 (D’Ayala et al., 2014) and D3.2 (D’Ayala et al., 2015), i.e. Hazard Distribution Matrix and Fragility

Functions Matrix. They are summarized in Table 6.

Source of uncertainty Type Description

Transformation of damage epistemic/model - How the physical damage states can be
states into functional losses | epistemic/parameter | translated into functional losses depends
on the type of model used and on some
input parameters (e.g. size/criticality of
infrastructure/element).

Transformation of damage epistemic/model - How the physical damage states can be
states into direct repair costs | epistemic/parameter | translated into direct repair costs depends
on the type of model used and on some
input parameters (e.g. size/criticality of
infrastructure/element).

Transformation of damage epistemic/model - How the physical damage states can be
states into repair duration epistemic/parameter | translated into repair durations depends
on the type of model used and on some
input parameters (e.g. size/criticality of
infrastructure/element).

Choice of system epistemic/model The type of performance indicator has a
performance indicator significant influence on the way the
system’s failure or survival is perceived
(e.g. connectivity-based vs capacity-based
performance indicators).

Table 6: Main sources of uncertainty involved in the system loss assessment.

2.2 Use of Bayesian Networks in risk analyses

The most common approaches to propagate uncertainties in risk analyses have been previously

discussed in INFRARISK deliverable D3.4 (D’Ayala and Gehl, 2015). They are summarized below:

e  Monte Carlo simulations: they consist of the sampling of random realizations of the various

input variables and the estimation of the final risk metric for each run. Improvements in the
Monte Carlo simulation approach may be adopted in order to accelerate the convergence of
the risk profile. Methods such as Importance Sampling, Latin Hypercube Sampling or Adaptive
Sampling can be used to improve efficiency. Monte Carlo simulations have been used in the
context of critical infrastructure exposed to seismic risk, such as the study of a system of
interdependent network systems at the regional scale (Cavalieri et al., 2012) or the estimation
of the road network performance in the city of Thessaloniki (Argyroudis et al., 2015).

Logic trees with Monte Carlo simulations: they are usually used to express epistemic
uncertainties that are related to model choice, since the possibility of selecting different input
variables can be represented as a tree with various branches representing the different choices.
Each branch is weighted (usually through expert judgment) in order to account for differences
in relevance between the models. The logic tree can be used within a Monte Carlo simulation.
For instance, logic trees are a common method to account for the various choices of GMPEs

© The INFRARISK Consortium 7
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that are offered to the modeller when estimating the seismic hazard intensities (Delavaud et al.,
2012).

e Bayesian Event Trees: they have been introduced by Marzocchi et al. (2004, 2010) for
probabilistic volcanic hazard assessment and eruption forecasting. They follow the same
general principles as logic trees, except that the branches use conditional probabilities and
Bayesian theory, instead of deterministic weights. This framework allows the inclusion of a
priori knowledge of the event’s probability, which may be updated as the evidence from the
field/experiment is gathered.

One of the main issues in the probabilistic estimation of infrastructure losses lies in the high
dimensionality of the problem (i.e. each individual element within the system plays a specific role
with respect to the global performance), which usually leads to an intractable number of potential
outcomes. This effect is even more magnified when epistemic uncertainties are included, since each
realisation of a potential input variable leads to another multiplication of the space of solutions: as
stated in the introduction, each realisation of a variable associated to an epistemic uncertainty
source has to generate another risk curve. While Monte Carlo simulations have been shown to yield
rather stable risk estimates after a reasonable number of samples (Cavalieri et al., 2012), these
methods may prove to be insufficient when very low-probability and high-consequence events are
investigated. In this context, it is very likely that the Monte Carlo methods will overlook such events,
thus resulting in an underestimation of the risk.

Alternatively, Bayesian Networks have emerged as an adequate tool for infrastructure risk
assessment and decision support (Bensi et al., 2011, 2013). Their main advantage resides in the
inference process, which enables probabilities of any nodes in the BN to be updated after specifying
the value or state of a given node (i.e. evidence). Bayesian inference can be worked either way, i.e.
generating a forward or a backward analysis depending on whether the evidence is entered at the
start or the end of the BN, respectively. Finally, exact inference algorithms such as junction trees
generate the exact probability distributions for any nodes, while such quantities are usually only
approximated when performing Monte Carlo simulations. This feature is an essential requirement
when extreme events are considered. However, in the case of larger systems, issues due to
computational loads and memory requirements start to appear, as explained in Section 2.2.3. It
should be noted that the judicial use of the product and sum rules of Bayesian Probability Theory
may be sufficient to perform the inference (van Erp et al.,, 2015), without requiring the use of
Bayesian Networks and their complex junction tree algorithm. However the practical aspects of this
theory and its ability to be automated for any systems remain to be demonstrated.

The application of Bayesian Networks to the field of infrastructure risk assessment has been
extensively discussed and detailed in Bensi et al. (2011), however the key concepts are summarized
in the following subsections.

2.2.1 General principles of Bayesian Network modelling

A BN takes the form of a directed acyclic graph (DAG), which is comprised of edges and nodes, which
are identified as parent nodes or child nodes depending on the direction of the edges. A node
without any parents is referred to as a root node (see example in Figure 2).

© The INFRARISK Consortium 8



INFRARISK
Deliverable D3.3 Uncertainty Quantification

Figure 2: Example of a BN with 5 nodes (C1 and C2 are root nodes)

Each node represents an event that may take different states (e.g. survival or failure for a node
representing an infrastructure component). The probability of each state is given by a conditional
probability table (CPT), which represents the probabilities given the states of the parents (see Table
7): in the case of a root node, the CPT becomes a table of marginal probabilities (e.g. assumed
probability distribution for a given input variable). It can be noticed that the CPT grows exponentially
with the number of parents, which usually generates computational issues when large BN are

solved.

C1 Cc2 c3 CPT

0 0 0 Pr(C3=0|C1=0,C2=0)
1 0 0 Pr(C3=0|C1=1,C2=0)
0 1 0 Pr(C3=0|C1=0,C2=1)
1 1 0 Pr(C3=0|C1=1,C2=1)
0 0 1 Pr(C3=1|C1=0,C2=0)
1 0 1 Pr(C3=1|C1=1,C2=0)
0 1 1 Pr(C3=1|C1=0,C2=1)
1 1 1 Pr(C3=1|C1=1,C2=1)

Table 7: Example of the CPT defining node C3, assuming binary states for C1, C2 and C3.

An inference is performed on the BN when one or more nodes are observed (i.e. evidence is entered
by specifying a given state) and when the probabilities of the other nodes are updated. In the case of
a forward analysis, evidence may be entered at the root nodes and the updated distributions can be
estimated at the child nodes (e.g. distribution of infrastructure losses given the occurrence of some
natural hazard events). Conversely, a backward analysis consists of the inference of the root nodes
based on the observation of a given child node (e.g. updated distribution of the occurrence rate of
some natural events given the observation of a given loss level).

2.2.2 The junction-tree algorithm

The junction-tree algorithm allows an exact inference to be performed on the BN, which results in
exact probability distributions at the nodes of interests. The algorithm is based on the following
steps (see Figure 3):

© The INFRARISK Consortium 9
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1. Moralization of the BN: all edges are represented as undirected links, and all the parents of a
same node are linked by a new undirected edge, if they were not previously linked.
The moral graph is used to successively remove nodes until the whole graph is eliminated.
When a given node is removed, its adjacent nodes are connected through additional
undirected edges (i.e. fill-in edges), if they were not previously linked. Then a clique is
formed by the eliminated node and all its adjacent nodes.

4. Another node is eliminated, and so on... A new clique is generated only if it is not a sub-
group of previous cliques.

5. Once all nodes have been eliminated, all the successive cliques form the junction tree.

6. The potential (i.e. joint probabilities) of each clique needs to be computed. Once this
operation is complete, the junction tree may be used for any inference of the BN.

a)

Elimination of C2 Elimination of C1 Elimination of C4 Elimination of C3

Clique {C1; C2; C3) Clique {C1; C3; C4} Clique {C3; C4; C5}

Figure 3: (a) Junction-tree algorithm applied to the BN example and (b) corresponding junction-tree
containing the cliques

]

It appears that the elimination order in the moral graph has a major influence on the computational
load of the inference, since the early or late removal of some nodes may generate non-optimal
clique sizes, which may lead to an intractable number of probabilities to be evaluated. However, it
has been shown that the determination of the optimal elimination order is an NP-hard problem
(Wen, 1990; Franchin and Laura, 2014). In practice, BN software such as the Bayes Net toolbox
(Murphy, 2007) proposes a partial optimization, where the next node that will generate either the
least amount of fill-in edges or the smallest clique size is chosen. However, this method may still lead
to elimination orders that lead to local optimal solutions only. Different elimination strategies have
been studied by Kjaerulff (1990), depending on the topological structure of the BN.

2.2.3 Application to infrastructure systems

In the context of infrastructure systems exposed to seismic hazard, Bensi et al. (2011, 2013) have
detailed the whole BN structure, from the definition of earthquake events to the computation of
losses at the system level. It could be roughly decomposed into four main parts:

© The INFRARISK Consortium 10
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e Definition of the source event: i.e. magnitude range, which fault ruptures, position on the fault,
etc. A simpler BN model has been proposed by Franchin (2014), where seismo-genetic sources
with different activity parameters are defined, proposing a probabilistic distribution of the
magnitude based on the Gutenberg-Richter law.

e  Computation of the distributed seismic intensity field: based on the location of vulnerable sites
(Bensi et al., 2011) or a predefined seismic grid (Franchin and Laura, 2014), the ground motion
parameters are computed through GMPEs while the aleatory uncertainties are included as root
nodes. Spatial correlation is accounted for by generating a correlated random field and applying
it to the intra-event variability. As suggested by Bensi et al. (2011), a Dunnett-Sobel class of
random variables (Dunnett and Sobel, 1955) may be used in order to approximate the
correlation structure and prevent the generation of too many edges in the BN.

e Computation of the damage to infrastructure components: each node represents an
infrastructure component, with the CPT being built with its respective fragility curve. Multi-
state components may be implemented, even though most common examples are only based
on binary elements (i.e. survival or failure).

e  Computation of the system performance: a performance indicator at the system level has to be
defined, usually the disconnection between two points of interest in the infrastructure system.
The transition from the individual damage at component level to the global performance of the
system represents one of the main challenges of infrastructure risk assessment. While some
strategies have been proposed to partially solve this computational bottleneck (see paragraphs
below), the issue of the high dimensionality of the solution space still hinders the application of
the proposed BN approach to large systems.

Bensi et al. (2013) have investigated different strategies to facilitate the modelling of system
performance, so that the computational load remains reasonable even for real-life applications. The
most intuitive BN formulation is to create a converging structure where all the component nodes
point to the system node: such a strategy ensures that all the information gathered from the
component states can be passed on to the system level; however the size of the CPT will grow
exponentially, since a system with n components with binary states will generate a CPT of 2™
elements. Therefore Bensi et al. (2013) have use the concept of minimum link sets (MLSs) and
minimum cut sets (MCSs) in order to further decompose the system into chains of series and parallel

sub-systems (see Figure 4):

e A MCS is a minimal set of components whose joint failure constitute failure of the system. In
the case of a road network, the system symbolizing the connection between two locations
could therefore be seen as an in-series assembly of parallel sub-systems (i.e. all the MCSs
representing the possible cut-offs between the two points).

e A MLS is a minimal set of components whose joint survival constitutes survival of the system. In
the case of a road network, the system symbolizing the connection between two locations
could therefore be seen as a parallel assembly of in-series sub-systems (i.e. all the MLSs
representing the possible pathways between the two points).
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In Figure 4, a converging structure from the MLS nodes to the SYS node is adopted (naive
formulation): for a large number of MLSs, another chain structure could be built in order to
sequentially assemble the MLSs to model the system performance (i.e., by definition, a system can
be decomposed into a parallel assembly of MLSs).

a) Cc2 MLSs:
c1 c3 [C1;C2;C3]
[C3;C4;C5]
Source Sink [C4;C6]
c4 cé

Figure 4: (a) Example of a directed network and the MLSs for the connection between one source
and one sink; (b) corresponding naive BN formulation (i.e. converging structure) and (c) BN
formulation using the MLSs

Thanks to this decomposition, component nodes can form specific groups of either series or parallel
sub-systems, which are easily implemented into a chain structure through intermediate nodes (i.e.
survival path events Es or failure path events E;). It is common to identify several MLSs (or MCSs) for
a given infrastructure system, while some components may be involved in more than one MLS (or
MCS): this may lead to a multiplication of the intermediate nodes, which may be detrimental to the
computational efficiency when large systems with many MLSs or MCSs are considered. For this
reason, Bensi et al. (2013) have also introduced algorithms to coalesce survival path sequences
(SPSs, i.e. chain of survival events) or failure path sequences (FPSs, i.e. chain of failure events), in
order to reduce the number of intermediate nodes. Additional heuristics have also been proposed in
order to improve the coalescence process, either through the definition of super-components or the
reduction of the possible permutations between intermediate nodes.

Even though the BN approach presents significant conceptual advantages, its applicability to large
and complex infrastructure systems still remains to be demonstrated. Bensi et al. (2011) have
proposed two simple examples to illustrate their developments: (i) a hypothetical road network
composed of 6 bridges, where the connectivity of the regional hospital to the four cities is assessed;
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(ii) the proposed California high-speed rail system to link San Francisco and Los Angeles, composed
of 19 track segments (i.e. 19 vulnerable components) assembled in series.

While the MLS or MCS formulation leads to the reduction of computational loads to some extent,
the following observations can be made in the case of large and complex infrastructure systems:

e The identification of the MLSs/MCSs of a given system constitutes the preliminary step before
the construction of the Bayesian Network. Recursive algorithms to find all possible paths in the
network may be used, however the number of possibilities increases exponentially with the size
of the system. This step is crucial, since failure to identify all MLSs (resp. MCSs) will lead to an
underestimation (resp. overestimation) of the system’s performance.

e The large number of MLSs/MCSs for a given system usually involves infrastructure nodes in
multiple MLSs/MCSs at the same time, thus leading to a number of intermediate nodes E,/E¢
that is much larger that the number of original infrastructure nodes. Bensi et al. (2013) have
addressed this issue by optimizing the layout of the chains of E¢/E; nodes (i.e. coalesced
SPSs/FPSs), thus significantly reducing the number of intermediate nodes. However, the trade-
off to this operation lies in the optimization of all possible permutations of intermediate nodes,
which is also associated with an exponential computational load.

e The proposed framework has been applied to connectivity analyses only, with binary-state
components. Further developments would be required if multi-state systems are considered or
if the system performance indicator is a capacity measure (i.e. serviceability analysis).

© The INFRARISK Consortium 13



INFRARISK
Deliverable D3.3 Uncertainty Quantification

3.0 SINGLE AND MULTI-RISK ANALYSES THROUGH A VIRTUAL EXAMPLE

The theoretical concepts described in the previous section are applied to a virtual proof-of-concept
example, in order to demonstrate the various steps involved and to estimate which uncertainty
sources are the most influential.

3.1 Characterization of the virtual proof-of-concept example
The virtual proof-of-concept example is presented in terms of asset types, network topology and
potential hazards.

3.1.1 General presentation

The virtual application that has been introduced in INFRARISK deliverable D3.1 (D’Ayala et al., 2014)
is reused in the context of multi-risk analyses (see basic layout in Figure 5). The aim of this exercise is
to demonstrate the feasibility of the Bayesian Networks that have been detailed in the sections
above, for the purpose of uncertainty treatment.

—— Road Segment

. ¢ —— Road along Slope
— Road on Embankment
= Bridge
— River Stream

Mountain Slope

C. TAZi
25 km !

A J ®
=

&
¥

{Not to scale)
5km

Figure 5: Layout of the proposed virtual application, with its different components

The application site is arbitrarily located somewhere around Northern Central Italy. A virtual road
network is imagined, with the following components:

e  Plain road segments, connecting B1 to B3 and B2 to B3;
e Aroad on an embankment, connecting B1 to B2 and B1 to C3;
e Aroadalong aslope, on the B2-B3 segment;
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e Three bridges (B1, B2, B3): B1 and B3 are assumed to be the same structure, with a span length
of 48.8m, while B2 is assumed to be 30m long.

3.1.2 Network topology

The topology of this simplified road network may be schematized as represented in Figure 6.

nl n2 n3

(CJ

[ (c)
nll I ell n8 \né o5 n7
]

ell n10 e8 e7

Figure 6: Topology of the proposed network

The graph and the attributes of its nodes and edges can also be represented in tabular form (see
Table 8 and Table 9). An undirected graph is assumed for this road network, meaning that each edge
can be travelled in both directions.

Node # Longitude Latitude Description
1 11.1794 44.2753 TAZ 1
2 11.2000 44.2753 Intersection
3 11.2006 44.2753 Intersection
4 11.2156 44,2212 Intersection
5 11.2472 44,1073 TAZ 4
6 11.2631 44.0500 Intersection
7 11.3411 44.0500 TAZ 2
8 11.2625 44.0500 Intersection
9 11.2000 44.0506 Intersection
10 11.2000 44,0500 Intersection
11 11.1836 44.0446 TAZ 3

Table 8: Description of the nodes composing the graph.
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Edge # | Startnode # | End node # Description
1 1 2 Road segment
2 2 3 Bridge B3
3 3 4 Road segment
4 4 5 Road along slope
5 5 6 Road segment
6 6 7 Road segment
7 6 8 Bridge B2
8 8 10 Road on embankment
9 2 9 Road segment
10 9 10 Bridge B1
11 10 11 Road on embankment

Table 9: Description of the edges composing the graph.

Only the edges are considered as vulnerable in the proposed example, since the nodes may be seen
as virtual objects representing the TAZs (i.e. traffic analysis zones) of the network (e.g.
exits/entrances of the network, points of interest such as cities or hospitals) or the extremities of
edges (i.e. intersections). Therefore the Minimum Link Sets (MLS) between each couple of TAZs are
represented by enumerating the list of travelled edges only (see Table 10). In the present example, it
is assumed that TAZs #3 and #4 are sources (i.e. origins), while TAZs #1 and #2 are potential sinks
(i.e. destinations). This enables to represent the corresponding origin-destination matrix, along with
the MLSs that are associated with each travel, as show in Table 10.

Origin / Destination TAZ #1 TAZ #2
TAZ #3 [11;10;9;1] [11;8;7;6]
[11;8;7,5;4;3;2;1] [11;10;9;2;3;4,5;6]
TAZ #4 [4;3;2;1] [5;6]
[5;7;8;10;9;1] (4;3;2;9;10;8;7;6]

Table 10: Edge numbers composing the different MLSs for all inter-TAZ travels.

3.1.3 Hazard types and potential damage modes
The following hazard events are considered in the application:

e  Earthquakes: the three bridges are assumed to be susceptible to seismic loading.

e Landslides: they are expected to happen mainly on the mountain slope, due to the occurrence
of earthquakes (ground shaking) or heavy rainfall (soil saturation). Ground failure (lateral
spreading) could also happen at the level of the embankment road.

e  Fluvial floods due to the presence of the river streams.

e  Scour at bridges due to the fluvial floods.

3.2 Modelling assumptions

Even though the proposed approach is applied to a virtual example, the underlying models and input
data are selected so that they are realistic and consistent with the type of hazards and infrastructure
elements that may be found in Northern Central Italy.
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3.2.1 Hazard models

Hazard data and models are selected for the infrastructure area, using mainly the results from
INFRARISK deliverable D3.1 (D’Ayala et al., 2014).

a. Earthquakes

The distributed seismic intensities are usually generated through ground motion prediction
equations (GMPEs), which consist of empirical equations using source and site parameters such as
magnitude, distance, soil class, etc. The review of existing GMPE models (Douglas, 2014) reveals a
multiplication of new GMPEs over the past few years, all of them based on various assumptions and
modelling approaches. This multiplicity of models may therefore be the source of epistemic
uncertainties due to model choice. A common approach to include this source of epistemic
uncertainty is to design a logic tree that proposes choices between various GMPEs and associated
weights. Recently, Atkinson and Adams (2013) have proposed an alternative method by defining
three representative GMPEs, lower, central and upper, to represent epistemic uncertainty. The three
representative GMPEs are derived from available median models. Atkinson and Adams (2013) show
that the three-equation model is equivalent to the use of multiple GMPEs, provided the same range
of epistemic uncertainty is sampled.

These representative GMPEs are based on a set of GMPEs that are potential candidates as ground
motion models for the area of interested. The central and upper/lower bound values are then
obtained by a statistical treatment of the possible ground motion parameter values for various
combinations of magnitude and distance. The outcome then consists of an array of discrete ground
motion values over the desired range of magnitude and distance. There is no functional form
associated with the model, while the epistemic uncertainty that is represented by the upper/lower
bounds remains variable. Therefore Atkinson and Adams (2013) state that this representative GMPE
approach has the advantage of being very flexible regarding the expression of the epistemic
uncertainty and that its practical use is facilitated by the manipulation of only three possible GMPEs,
as opposed to a complete logic tree.

While Atkinson and Adams (2013) have developed this approach for the generation of probabilistic
seismic hazard maps for Canada, a similar representative GMPE approach has been applied to the
European context with the INFRARISK project. To this end, a selection is made from recent GMPEs
that are presented in the Bulletin of Earthquake Engineering Special Issue (Volume 12, issue 1, 2014)
on the new generation of ground-motion models for Europe and the Middle East. Four GMPEs are
chosen as the basis for the derivation of the representative GMPE model, namely, GMPEs from
Akkar et al. (2014a), Bindi et al. (2014), Bora et al. (2014) and Derras et al. (2014). These GMPEs are
all based on the RESORCE database of ground motion records (Akkar et al., 2014b) and they share a
common validity domain (i.e. moment magnitude M,, between 4.0 and 7.6, distance between 1 and
200 km). Some of these GMPEs adopt a functional form, while others are fully data-driven through
artificial neural network methods (Derras et al., 2014). For the needs of the virtual case-study, the
following assumptions are used to generate the ground motions parameters:
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e  Normal faulting style is assumed by default;

e Epicentral distance is used as the input for the representative GMPE model. For GMPEs using
others metrics such as the Joyner-Boore distance, the conversion equations proposed in
Atkinson et al. (2011) are used, assuming shallow earthquakes (i.e. focal depth of 10 km).

. EC8 soil classes B are assumed, or similarly Vg3, = 580 m/s for models that directly use shear
wave velocity as a proxy to soil amplification.

e PGA is chosen as the output ground motion parameter in the present case, even though the
derived representative GMPE is able to also predict PGV and SA at various periods (i.e. T =
0.05s, 0.1s, 0.2s, 0.3s, 0.5s, 1.0s and 2.0s).

The 3-equation median GMPE is plotted for a few magnitudes in Figure 7. The lower and upper
bounds representing the epistemic uncertainty are estimated for the 16™and 84™ percentiles (i.e.
one standard deviation). Therefore the proposed model enables a complex problem to be
represented by a minimum number of branches for single-site hazard analysis and mapping.
Respective weights for the median, upper and lower bounds could for instance be [0.4518; 0.2741;

0.2741], according to the probability density function of the normal distribution.

[| — Akkar et al (2014)
—Bindi et al (2014)
Bora et al (2014)
Derras etal (2014)
=+ Median GMPE X
107" | -+ Lower bound "q,"'-r
=+ Upper bound

PGA [mig]

10° 10 10° 10" 10 10

R, [km] R, [km]

Figure 7: 3-branch representative GMPE and its underlying models
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b. Floods

The rational method is used for the estimation of flow discharge at the various bridge locations, as
detailed in INFRARISK deliverable D3.1 (D’Ayala et al., 2014). The flow Q is expressed as follows:

- """ K 1
Q 3.6 ! @

Where C is the run-off coefficient of the drainage area, I is the maximum rainfall intensity during
concentration time T, A is the catchment area and K, is the uniformity coefficient (Témez, 1991;
Ferrer, 1993). The concentration time 7. may be obtained as a function of the length of the
waterway between the bridge location and the catchment area, as well as the gradient of the main
watercourse. The run-off coefficient is estimated through the following equation:
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Where P, is the maximum daily rainfall and Py is the run-off threshold, which mainly depends on the

type of terrain.

Finally, the maximum rainfall intensity is obtained as a function of /;, the design daily rainfall for an
event of a given return period:
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The ratio /;/I, represents the ratio of the hourly intensity over the average daily intensity for the
given case-study area. This value is usually tabulated in guidelines or standards. The design daily
rainfall is usually obtained through the analysis of rain records of weather stations over the area of
interest. Sufficient time series then allow different return periods to be associated with given levels
of daily rainfall.

In the present example, two catchment areas are assumed, i.e. one feeding the river branch under
bridge B2 and the other linked to bridge B3. Based on the examples and assumptions used in
INFRARISK deliverable D3.1 (D’Ayala et al., 2014), three return periods are proposed, as shown in
Table 11.

Return Daily rainfall

period Catchment area 1 (B2) Catchment area 2 (B3)
50y 154 mm 235 mm
100y 174 mm 289 mm
500y 226 mm 362 mm

Table 11: Rainfall events for each return period and each catchment area.
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These design rainfall events are then used to estimate the maximum flow discharge that is expected
under bridges B2 and B3 (see Table 12), again using some of the parameters that have been
assumed in INFRARISK deliverable D3.1 (D’Ayala et al., 2014).

* *

tocation | T1 | (8 | (oot | mem | 10 | i) | 4% | gt | g | € | % | i
B2 50 11.96 154 146 1.04 40 9 6.1 535 0.33 1.07 63.22
100 11.96 174 165 1.04 40 9 6.9 60.4 0.37 1.07 80.34

500 11.96 226 214 1.04 40 9 8.9 78.5 0.47 1.07 129.86

B3 50 44.46 235 223 2.13 40 9 9.3 54.0 0.48 1.07 339.39
100 44.46 289 274 2.13 40 9 11.4 66.4 0.55 1.07 481.02

500 44.46 362 343 2.13 40 9 14.3 83.2 0.62 1.07 686.44

Table 12: Assumed parameters for rainfall events and resulting flow discharge from the rational
method, for different return periods and bridge locations.

It should be noted that the bridge B1 is located at the confluence of the two river streams that cross
bridge B2 and B3. For simplification purposes, it is then assumed that the maximum flow discharge
at B1 is the sum of the flow discharges B2 and B3 for the various return periods. This simplistic
model may still be reasonably accurate, if it can be assumed that the rainfall events over the two
catchment areas are strongly correlated due to their geographical proximity (i.e. joint occurrence of
maximum daily rainfall).

c. Landslides

As detailed in INFRARISK deliverable D3.1 (D’Ayala et al., 2014), an infinite slope model for
superficial landslides is adopted for road segments that run along slopes. In the case of earthquake-
triggered landslides, the yield acceleration k, can be expressed as follows (Saygili, 2008; Saygili and
Rathje, 2009):

_ (Fs-1)g
" tan Q'+ %an o

Where FS represents the factor of safety, ¢’ is the internal friction angle and a is the slope angle.

k )

The factor of safety under static conditions is estimated as follows:
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Where ¢’ is the effective cohesion of the soil, y is the soil unit weight, y,, is the water unit weight and
m is the saturation ratio. The soil parameters are summarized in Table 13: due to lack of knowledge
on the shear strength of the soil, a cohesion of OkPa and a friction angle of 40° are assumed, as
suggested by CDMG (1998). Regarding the thickness of the moving layer, Jibson et al. (2000) have
stated that a typical value for superficial landslides on natural slopes is several feet, i.e. 8ft
translating to 2.43m.
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Parameter Value
Effective cohesion (¢’) 0 kPa
Internal friction angle (¢’) 40°
Soil unit weight (y) 19 kN/m?
Failure surface thickness (t) 2.43 m

Table 13: Soil parameters assumed for the landslide hazard analysis.

The major difficulty lies in the estimation of the saturation ratio m, which potentially depends on
many factors (Saygili, 2008) including; depth of the groundwater table, precipitation pattern, soil
transmissivity, slope geometry, etc. It is usually estimated through detailed hydrology models or
expert judgement. In the present exercise, due to the lack of relevant data, an arbitrary distribution
of the saturation ratio as a function of the type of rainfall event is proposed (see Table 14), in order
to demonstrate the impact of rainfall on the landslide hazard and to account for the uncertainties
surrounding the estimation of this parameter.

Rainfall Saturation ratio (m)
event 0.20 0.50 0.75 1.00
none 0.8 0.2 - -
50y 0.15 0.7 0.15 -
100y - 0.15 0.7 0.15
500y - - 0.2 0.8

Table 14: Proposed distribution of the saturation ratio according to the type of rainfall event.

Therefore the proposed model allows the prediction of the occurrence of earthquake-triggered
superficial landslides, by comparing the PGA value at the site with the yield acceleration k, of the
slope. Since the yield acceleration is a function of the saturation ratio, which depends on the amount
of rainfall, this landslide hazard model is dependent on both the earthquake and rainfall events.

3.2.2 Fragility models

Fragility models are selected for the various infrastructure elements at risk, using mainly the results
from INFRARISK deliverable D3.2 (D’Ayala et al., 2015).

a. Bridges

Bridges B1 and B3 are assumed to be identical multi-span simply-supported concrete girder bridges,
as described in Nielson (2005). These bridges have been the object of a specific fragility assessment
for aggregated risks (Gehl and D’Ayala, 2015a,b; D’Ayala et al., 2015). In the present context, since
the measure of interest is the potential disconnection of the TAZs from the network, the failure
modes that are bound to lead to the closure of the bridge are considered, namely deck unseating
(failure mode 3) and collapse of substructure components (failure mode 4). The corresponding
fragility model is displayed in Figure 8 (aggregation of failure modes 3 and 4).
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15

PGA [mis?]

Figure 8: Fragility model for the closure of bridges B1 and B3, as a function of flow discharge Q and
peak ground acceleration PGA

This fragility surface is able to predict the bridge failure probability due to earthquake or flood alone,
as well as the interaction between flood and earthquake cumulated damages, in the case where an
earthquake occurs during the period when a bridge has been damaged by a flood (i.e. submersion
and scour effects). Damage due to earthquake-induced ground failure is also accounted for.

In the case of bridge B2, a smaller single-span concrete girder bridge is proposed (length of 30m),
due to the reduced width of the river stream at this location. For the sake of the demonstration (i.e.
use of a wide range of different models with various uncertainties), it is assumed that limited
knowledge is available for this bridge type. Therefore the fragility selection procedure from the
SYNER-G database (see details in INFRARISK deliverable D3.2; D’Ayala et al., 2015) is adopted here,
based solely on the general taxonomy parameters of bridge B2. This method provides a median
fragility curve as well as 16%-84% confidence bounds, which are meant to represent the epistemic
uncertainties due to both the lack of knowledge on the bridge characteristic and the choice among
various literature references. The resulting fragility model for bridge B2 is summarized in Table 15:
only damage states DS3 and DS4 are represented, since they are the ones that are the most likely to
lead to the closure of the bridge.

Damage Median Lower bound Upper bound
states a [m/s?] 8 a[m/s?] 8 a[m/s?] 8
DS3 7.458 0.832 5.007 0.268 13.298 0.851
DS4 10.389 0.906 5.035 0.265 18.532 1.163

Table 15: Fragility curves and corresponding confidence bounds for bridge B2.

It should be noted that this fragility model is only applicable to seismic risk. Since the bridge B2 is a
single-span structure, the inclusion of local scour at piers is irrelevant. However, deck unseating
might still occur due to the lateral hydraulic forces if the water is high enough (Kameshwar and
Padgett, 2014). As a result, following the procedure presented in Gehl and D’Ayala (2015a) and
D’Ayala et al. (2015), the fragility curve for the deck unseating of bridge B2 due to fluvial flood may
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be represented by the following parameters: a = 2501.5m>/s and 8 = 0.490. Here the mean fragility
parameter a corresponds to a lower flow discharge value than for bridges B1 and B3, since the river
bed is assumed to be narrower.

b. Embankments

Fragility curves for embankments exposed to earthquake-induced ground failure are selected from
the study by Argyroudis and Kaynia (2015). An EC8 soil type D and an embankment height of 6m are
assumed. As a result, the fragility parameters for the extensive/complete damage to these types of
embankments are: a = 4.807m/s> and 8 = 0.800.

c. Road segments

Fragility curves for plain road segments exposed to earthquake-induced ground failure are also
selected from Argyroudis and Kaynia (2015). Even though this study is focused on the fragility of
embankments and cuts, it could be assumed that the road segments of the present case-study are
built on a layer of compacted soil, which may correspond to a short embankment with stiffer soil
(i.e. h = 2m and EC8 soil type C). As a result, the fragility parameters for the extensive/complete
damage to these types of road segments are: o = 15.402m/s” and 8 = 1.000.

d. Roads along a slope

Fragility curves for roads running along a slope and exposed to landslides have been developed in
the INFRARISK deliverable D3.2 (D’Ayala et al., 2015). They are characterized by the yield
acceleration of the slope, as shown in Table 16. The extent of the damage is given by the amount of
displacement that is induced, which is usually obtained through empirical equations such as the one
by Bray and Travasarou (2007).

k, a [m/s?] 6
0.05g 4.571 0.406
0.1g 7.726 0.382
0.2g 13.318 0.349
0.3g 18.418 0.328

Table 16: Fragility curves for extensive damage to urban roads along a slope, as a function of k,
(D’Ayala et al., 2015).

The proposed fragility curves can be considered as a multi-hazard fragility model, since they are
expressed as a function of PGA for different values of k,, which is linked to flood events through the
soil saturation ratio m.

3.2.3 Functionality models

Linking physical damage states to the actual functionality losses of the various infrastructure
elements represents another challenge, which has been addressed in the INFRARISK deliverable D3.2
(D’Ayala et al., 2015). Functionality loss models corresponding to global damage states of bridges
have been proposed. In the present case-study, the measure of interest is the disconnection of the
TAZs from the network, therefore the functionality measure that is required is whether all traffic
lanes are closed or not. As a result, in the case of bridge B2, the previously developed functionality
loss models are the following:
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e  Global damage state DS3: 50% probability of all traffic lanes being closed;
e  Global damage state DS4: 100% probability of all traffic lanes being closed.

The effect of deck unseating due to fluvial flood has also to be integrated. By definition, deck
unseating will lead to the closure of the bridge.

In the case of bridges B1 and B3, the specific component-based multi-risk fragility model inherently
accounts for functional losses, therefore it can be concluded that the occurrence of either failure
modes 3 or 4 (see Figure 8) will lead to full bridge closure.

Finally, the physical damage states that have been considered for plain road segments,
embankments and roads along slopes (i.e. extensive/complete damage) are found to automatically
lead to the closure of all traffic lanes, according to the expert-based survey that has been conducted
in INFRARISK deliverable D3.2 (D’Ayala et al., 2015).

3.2.4 System performance indicator

The current developments in the use of Bayesian Networks for the risk analysis of infrastructure
systems only permit the prediction of connectivity-based performance indicators, since estimating
capacity-based indicators (e.g. through traffic analysis models) would require a much deeper analysis
of the physical network and generate intractable computations. Therefore the Single Connectivity
Loss (SCL) index is chosen in order to represent the amount of disconnected TAZs (i.e. locations that
cannot be reached anymore by the road). The SCL index has been introduced by Poljansek et al.
(2012) and has been previously used within the SYNER-G project (2009-2013):

SCL:1—<Nf> (6)
NO ie[l..n]

Where <> is the averaging operation over the n sinks of the system, N, is the number of sources for

sink i in normal conditions and N, is the number of remaining sources for sink i in post-disaster
conditions. In the present case-study, two sinks, TAZs #1 and #2, are potentially connected to two
sources, TAZs #3 and #4:

1 2
SCL:l—%-{%+N—25:| 0]

The objective of the following analysis is therefore to estimate how many sources N’ and N, remain
connected to the sinks. This is done by evaluating whether the various MLSs that have previously
identified are still viable. Finally, it should be noted, that in this reduced example, the SCL index may
only take a reduced set of possible values: 0, 0.25, 0.50, 0.75 and 1.

3.3 Summary of uncertainty sources

The models and assumptions used in the present examples include the following sources of
uncertainty, based on the general uncertainty framework described in Section 2.1:
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e  Aleatory uncertainties:

(0]

Inter-event variability of the GMPE model: it is represented by the normally
distributed term n that is associated with each GMPE.

Intra-event variability of the GMPE model: it is specific to each site i and is
represented by the normally distributed term ;. A spatial correlation structure is
adopted between the vulnerable sites to generate the terms g, based on a
correlation distance.

Dispersion inherent to the fragility models: it corresponds the standard-deviation of
the fragility functions. It does necessarily include aleatory uncertainties, since it is
usually a combination of record-to-record variability, modelling assumptions and
definition of the damage state.

e  Epistemic uncertainties:

(0]

Choice of a GMPE: the 3-branch representative GMPE that has been discussed above
is used here in order to represent the epistemic uncertainties due to model choice.

Choice of a fragility curve: for bridge B2, only global features are identified (e.g. deck
type, spans, pier type, etc.) and a hybrid fragility model is derived from existing
references, along with confidence bounds.

Dispersion inherent to the functionality modes: for bridge B2, a probabilistic
functionality loss model is adopted given the physical damage states, since closure
of the bridge may not be accurately predicted due to the lack of knowledge (i.e.
meaning of the damage states considered).

Estimation of the yield acceleration k,: the evolution of the soil saturation ratio,
which is used in the computation of the yield acceleration, along with the rainfall
pattern, is completely assumed due the absence of any predictive model and
relevant expertise on this aspect.

Interactions between the different risks: the interaction between the flood and the
seismic hazard is represented by the development of a multi-risk fragility model for
bridges B1 and B3. This model is based on the assumption that a given bridge might
still be damaged after a flood event, thus increasing its vulnerability from a
subsequent earthquake: therefore a time frame is needed in order to account for
this risk interaction (i.e. duration during which the bridge might remain unrepaired).

3.4 Corresponding Bayesian Network

Based on the previously discussed assumptions, a Bayesian Network (BN) can be built in order to

perform the multi-risk analysis of the road network (see Figure 9): all the successive steps of the risk

analysis are present, i.e. the definition of the source events, the hazard events, the physical damage

events and the functional consequences at the system level.
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Figure 9: Bayesian Network used for the multi-risk analysis of the infrastructure system

The different nodes involved in the BN are the following:

e  M: magnitude range of the possible earthquake events. An extra state has been added in order
to account for no earthquake occurring.

e  Epi: discretized locations of the epicentre of the earthquake events.

e R:: epicentral distance from the infrastructure elements.

e  GMPE: possible GMPEs to be used in the analysis (model uncertainty).

e  Q;: median PGA values at the sites of interest, without any uncertainty factors.

e U and Vi: nodes containing the standard normal distribution in order to represent the spatial
correlation of the seismic hazard at the 11 vulnerable sites.
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e e intra-event uncertainty term, specific to each element, due to the spatial correlation
assumption.

e n:inter-event uncertainty term, common to all elements.
e  S;:final PGA values at the sites of interest, including intra- and inter-event uncertainties.

e  FL: range of rainfall events for the three return periods, being directly linked to the flow
discharge value at each bridge location. An extra state has been added in order to account for
no flood occurring.

e  ky: possible values of yield acceleration based on the type of rainfall event.

e  FRA: possible fragility curves for bridge B2 to be used in the analysis (i.e. median curve and
confidence bounds).

e  C;: damage states of the infrastructure elements.

e F: functional states of bridge B2, depending on the seismic physical damage states and on the
flow discharge value.

e  SC;: super-components, i.e. groups of elements that are found to be in-series within the MLSs.
e  Es;: survival events for the elements within the same MLS.

e  Ef;: failure events for the elements for different MLSs.

° Ns;: number of sources still connected to sink /.

e  SCL: single connectivity loss.

In Figure 9, the red nodes represent the input to the Bayesian Networks in terms of potential source
events (i.e. earthquakes and rainfall). The blue nodes represent the computation of the distributed
hazard values, based on the geographical coordinates of the system (brown nodes). The green nodes
represent the damages and functional losses to infrastructure elements, while the yellow nodes
represent the computation of the disconnected TAZs and the SCL based on the failures of elements.
Finally, the grey nodes represent aleatory uncertainty sources (i.e. intra- and inter-event variability),
while the highlighted bright yellow nodes represent epistemic uncertainty source (i.e. model choice
and parameter assumptions).

Regarding the system functionality part of the BN, each source-sink couple has to be assessed
separately with its respective MLSs. If the efficient MLS formulation with distinct survival path
sequences (SPSs) from Bensi et al. (2013) were used, the bottom of the BN would look like in Figure
10. In this figure, only the BN structure to estimate whether TAZs #3 and #1 are disconnected is
presented: it is composed of MLSs [1;9;10;11] and [1;2;3;4;5;7;8;11], as previously detailed (see
Table 10). The Es; nodes represent survival events for in-series systems and their CPT takes the form
of a Boolean table, as shown in Table 17. Conversely, the SYS node corresponds to a parallel
assembly, since it takes all MLSs to fail in order for the disconnection to occur.
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Figure 10: Efficient MLS formulation with distinct SPSs, in order to evaluate the disconnection of TAZ
#3 with TAZ #1 (with two MLSs)

Binary states Probabilities
G Es.;/Ci; | Es; Series system
0 0 0 1
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1

Table 17: Conditional probability table for Es; nodes, with binary states. The convention is O for
survival (i.e. damage state 0) and 1 for failure (i.e. damage state 1).

As stated by Bensi et al. (2013), some of the Es; nodes present in Figure 10 are redundant since they
are present for the same component event: for large systems, this issue could lead to unnecessary
large BNs that would become too complex to solve. Therefore it is necessary to simplify this BN
structure: a first strategy could be to reduce all in-series components that are common to the
different MLSs. An analysis of shows that sets of components [2;3;4], [7;8] and [9;10] can be
aggregated into super-components #1, #2 and #3 (see Figure 11).
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Figure 11: Efficient MLS formulation with distinct SPSs and super-components, in order to evaluate
the disconnection of TAZ #3 with TAZ #1 (with two MLSs)

Once the super-components have been introduced, it appears that the Es nodes corresponding to
components C; and Cy; are redundant, since they are used in both MLSs. They could therefore be
moved to the end of a chain structure leading to SYS (i.e. they could be seen as a bottleneck).
Besides these two nodes, the Es nodes corresponding to Cs, SC; and SC, components remain in the
second MLS, and they can be moved to the beginning of the chain structure as a series system.
Finally, there is only one node left in the first MLS, i.e. the Es node relating to Cs component. This
node can be added to the chain structure, however it must bear the information that it belongs to a
different MLS, thus resulting in a parallel assembly with the nodes from the other MLS. Therefore
the Es node has to be turned in an Ef node, or failure event node, as introduced by Bensi et al.
(2013). The CPT of such a node is detailed in Table 18. The final BN that predicts the disconnection
between TAZs #3 and #1 is presented in Figure 12.

Binary states Probabilities
G Es.;/ Ci; In; Parallel system
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 0
1 1 1 1

Table 18: Conditional probability table for Ef, nodes, with binary states. The convention is 0 for
survival (i.e. damage state 0) and 1 for failure (i.e. damage state 1).
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Figure 12: Efficient MLS formulation with coalesced SPSs in a chain structure and super-components,
in order to evaluate the disconnection of TAZ #3 with TAZ #1 (with two MLSs)

The comparison between Figure 10 and Figure 12 shows the reduction in the number of BN nodes
that is induced by the aggregation of SPSs into a chain structure and the use of super-components.
This effect is even more visible at the scale of the whole system, since previously defined super-
components may be reused for all MLSs. In the present example, the whole BN with an efficient MLS
formulation and distinct SPSs would result in 118 nodes, while it has been reduced to 99 nodes by
coalescing the SPSs (see Figure 9).

Finally, the BN can be implemented into the Bayes Net toolbox (Murphy, 2007), where a junction-
tree algorithm is used in order to perform the Bayesian inference and predict the probabilistic
distribution of SCL based on the occurrence rate of the source events (i.e. earthquake and rainfall).

3.5 Multi-risk analysis

Currently, there are limited examples in the literature of multi-risk analyses that account for all
possible interactions, from the source events to the loss estimations. Selva (2013) relies on a formal
statistical model to include multi-risk interactions at hazard, vulnerability and exposure levels. This
approach is applied to two hypothetical cases, i.e. (i) seismic risk and volcanic ash deposits and (ii)
tsunami risk induced by damaging earthquakes. Mignan et al. (2014) have simulated time series that
may include any number of source events or triggered events, depending on their rate of
occurrence. These time-dependent scenarios are randomly generated through a sequential Monte
Carlo method that is able to treat either independent coinciding events or triggered/cascading
events. This approach is applied to a virtual city that is potentially exposed to a wide range of hazard
types (i.e. the “MATRIX Virtual City” concept). The results are presented under the form of a risk
matrix (i.e. loss vs frequency) and the risk migration between different interaction assumptions can
be observed.

Since the BN approach proposed in the present report may not be easily applicable to a time-
dependent framework with sequential events, it is first checked whether the BN can comply with the
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multi-risk probabilistic model that has been introduced by Selva (2013). He introduces the concept
of a persistence time window AT, which is crucial to properly model the effect of a second hazard
event while the effects of the first event in terms of vulnerability and exposure are still present.
Considering two potential events E1 and E2, the probability of E1 occurring while the effects of E2
are still present is given by the following expression (Selva, 2013):

H (El,Ez)(Xj ): H (EJJEZ)(XJ_ ;ATp ) Pr(EZ;AT) ®

Where H(')(xj) represents the probability of having a given hazard event with the value x 2 x;, and AT
is the global exposure time over which the risk is estimated. In the context of the present case-study
example, E2 represents the rainfall event, E1 the earthquake event and the exposure time is set as
AT = 1 year; this corresponds to the INFRARISK objective of quantifying the yearly losses for the road
infrastructure. Finally, it is assumed that the persistence time window AT, could be around 1 month
(i.e. accounting for the time needed by the flood to recede and the duration of the subsequent
repair operations).

Moving to the risk factor R.(>/), which gives the probability of exceeding losses / over time period AT,
Selva (2013) defines the following expression for the risk due to E1 with possible interactions with
E2:

RE(> )= REED (> )4 REED (> |) ©

Where the first term on the right side is referred to as the co-active risk factor: it represents the part
of the risk that is only generated by the joint occurrence of E1 and E2 in the same time window AT,,.
The second term is the isolated risk factor, which can be seen as the part of risk that remains when
E1is not interacting with E2. It can be further decomposed into two distinct parts:

RENED (1) = RE (> 1) REW (2 1) 10

The first term is referred to as the single risk factor for E1, since it represents the risk due of E1 over
the whole AT period, without considering the effects of E2. The second term is referred to as the
virtual risk factor, since it represents the risk due to both E1 and E2 over AT, except that the fragility
and exposure models are not updated due to the potential impacts of E2.

This framework is then applied to the BN approach proposed here. The modularity of the BN and its
ability to handle different types of evidence (i.e. assumptions or observations) permits the
generation of risk curves for the different assumptions above:

e  Earthquake risk only (single risk): the FL node (flood intensity) is evidenced with Pr(FL=0) = 1,
while the probability of occurrence of the M node is set for AT = 1 year.

e  Flood risk only (single risk): the M node (magnitude range) is evidenced with Pr(M=0) = 1, while
the probability of occurrence of the FL node is set for AT = 1 year.

¢ Interacting earthquake and flood risks (co-active risk): the full distributions of FL and M nodes
are sampled. The probability of occurrence of FL is set for AT = 1 year, while AT, = 1 month is
used for M.
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e Interacting earthquake and flood risks without updating fragility model (virtual risk): it is
obtained by summing the flood single risk (with AT = 1 year) and the earthquake single risk (with
AT, =1 month).

e Earthquake risk outside the time window of flood risk (isolated risk): it is obtained by
subtracting the virtual risk from the sum of the flood and earthquake single risks (both with AT
=1 year).

e  Global risk from both earthquake and rainfall events over a year (multi-risk): it is obtained by
summing the isolated risk factor and the co-active risk factor.

The BN can then be solved for these different scenarios, and the resulting risk curves (i.e. year
probability of exceedance for the different SCL values) are presented in Figure 13 and Table 19.

0

10 F,,
==%= single EQ risk
-=%- single FL risk
—%— co-active risk
z —=— isolated risk
5 107} --%- multi-risk
=]
QD
QO
(%]
-
L
[P
(=]
g
3 10
[i+]
0
o
o
=
=
o
10°F :
)
]
[
1]
‘l.
L}
1 1 1 1 ] L4 1 1 1 ]
0 10 20 30 40 50 60 70 80 a0 100

SCL [%]

Figure 13: Risk curves for the SCL index, using the different risk factors

Risk factor
Single EQ Single FL Co-active Virtual Isolated Multi

SCL

50% 7.5916E-05 9.8785E-04 | 9.9449E-04 | 9.9421E-04 | 6.9560E-05 1.0641E-03

75% 1.2272E-05 2.5635E-13 1.0977E-06 1.0274E-06 1.1244E-05 1.2342E-05

100% 1.2498E-06 NaN 1.1082E-07 1.0463E-07 1.1452E-06 | 1.2560E-06

Table 19: Yearly probability of exceeding the given SCL value with the different risk factors
considered.

Selva (2013) has also introduced &R, a single risk bias measure which estimates the bias in the risk
measure when only single risk analyses are performed, without accounting for the interaction
effects:

© The INFRARISK Consortium 32



INFRARISK

Deliverable D3.3 Uncertainty Quantification

SR = RC(El,Ez) _ RC(El,v) (11)

It consists in the difference between the virtual risk factor and the co-active risk factor. Selva (2013)
also proposes to normalize this bias measure by the single risk factor. However, in the present case-
study, both hazard events have damaging potential and E2 (i.e. rainfall event) is not limited to the
role of an aggravating risk factor. Therefore it is proposed here to normalize by the sum of both
single risk factors:

R(El,Ez) _ RéEl,v)

Ry, = RC(El) + RC(Ez)

(12)

The multi-risk bias values for the present example are detailed in Table 20. The effect of multi-risk
interaction looks rather light, i.e. the bias measure not exceeding 1% with AT, = 1 month, however it
is interesting to observe that the bias follows the same trend as the risk migration estimated by
Mignan et al. (2014): when considering multi-risk interactions, extreme consequence events tend to
have a large rate of occurrence (i.e. SCL = 75% and SCL = 100% in the present case), which seems to
have partly migrated from the rate of occurrence of less severe events (e.g. SCL = 50%). The risk bias
measure is also presented for different values of the persistence time window AT, thus showing the
significant influence of the temporal aspect on multi-risk analyses.

SCL 6Ry with AT, =1 month | 6Ry with AT, = 1 week 6Ry with AT, = 3 months
50% 0.027% 0.006% 0.080%
75% 0.574% 0.132% 1.719%
100% 0.495% 0.114% 1.483%

Table 20: Relative risk bias measure using SCL as the system’s loss measure.

3.6 Sensitivity from uncertainty sources

This section details the effects of some of the uncertainties sources that have been identified. Such a
task can be efficiently conducted by taking advantage of the BN approach, which enables the value
of some nodes to be forced (i.e. evidence input) and the distribution of the outputs through an exact
inference can be observed.

The aforementioned computations have been conducted by bounding the aleatory uncertainties of
the GMPE to the +/- 1 g, interval, where o, is the standard deviation that results from the
composition of intra- and inter-event variability (which are inherent to the GMPE model):

2

_ 2
o - Gintra + Ginter (13)

a,tot
The effect of the range of the possible uncertainty values is illustrated in Figure 14. As expected, the
inclusion of aleatory uncertainties in the hazard prediction models results in a significant increase of
the expected losses. It is interesting to note that the loss probabilities tend to converge and even
slightly decrease for +/- 3 0,1 For such a level of variability, very high and unrealistic hazard
intensity values are sampled, which may lead to a saturation of the fragility function s (i.e. failure
probabilities equal to 1), while in the meantime, very low hazard intensities are also sampled, thus
resulting in no failure at all. Truncating the ground motion variability at +/- 1 0, appears to
constitute a sound assumption in the present case: the highest generated values with this sigma
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level are of the order of 20~25 m/s, while the use of +/- 2 g, or above would lead to intensity
values that are not physically realistic.
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Figure 14: Risk curves for the SCL index, with different assumptions on the aleatory uncertainties
associated with the GMPE model

Another variable that is related to the GMPE aleatory uncertainties is the correlation distance of the
ground motion field, which is used to express the spatial correlation of the intra-event variability. In
the present study, a correlation distance of 13.5 km for PGA has been assumed, based on the
recommendations of Akkar and Bommer (2010). The effect of other assumptions (i.e. no spatial
correlation or infinite correlation distance) on the global loss of the infrastructure system is
represented in Figure 15. It can be observed that the removal of the spatial correlation factor will
lead to an underestimation of the risk. This phenomenon may be explained by the definition of the
system performance indicator that has been selected. The single connectivity loss SCL counts the
number of sources that are still connected to a given sink, while the topology of the present virtual
network generates multiple MLSs between each couple of source and sink. Therefore the studied
example may be assimilated to a “parallel” system, where multiple paths need to be disrupted for a
source to be disconnected and the SCL value to change. Finally, the present problem with a
correlation distance of 13.5 km may be adequately bounded by the two extreme assumptions, i.e.
no correlation (lower bound) and full correlation (upper bound).
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Figure 15: Risk curves for the SCL index, with different assumptions on the spatial correlation
distance

Regarding epistemic uncertainties, the variability that is linked to the choice of ground motion model
(i.e. GMPE node), to the choice of the seismic fragility curve for bridge B2 (i.e. FRAG node), to the
estimation of the slope vyield acceleration (i.e. ky node) and the persistence time window is
investigated by successively fixing the different states of the mentioned nodes. The assumptions for
each uncertainty sources are summarized in Table 21.

Uncertainty Median value Lower bound Upper bound
source
GMPE Median GMPE curve Lower GMPE curve Upper GMPE curve
FRAG Median fragility curve Lower fragility curve Upper fragility curve
ky Median ky values from Lower ky values from Upper ky values from
Table 14 Table 14 Table 14
AT, 1 month 1 week 3 months

Table 21: Assumptions used for the epistemic uncertainty sources.

The effect of these epistemic uncertainty sources is represented in Figure 16: the largest change is
observed when epistemic uncertainties on the ground motion model are considered, however it is
much smaller than the discrepancies generated by the aleatory uncertainties (see Figure 14). On the
other hand, epistemic uncertainties associated with the FRAG and ky nodes have a very limited
impact on the final losses: this may be due mostly to the fact that they are only feeding into a small
portion of the infrastructure system (bridge B2 and road along slope, respectively). Finally, the
temporal effect, i.e. the change in the value of the persistence time window, is not visible at this
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level, even though it has been shown that it has a major impact on the risk bias measure (see Table
20). Presently, the only interactions at the fragility level that have been taken into account are the
detrimental effect of floods on the seismic fragility of the two bridges B1 and B3. Therefore more
multi-risk models for more infrastructure component types and more failure modes should be
developed in order to better account for these interaction effects.
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Figure 16: Effect of some sources of epistemic uncertainties on the risk curve

The aggregated effects of the all epistemic uncertainties are summarized in Figure 17, where the
upper and lower bounds are defined by taking the worst and best assumptions from Table 21,
respectively. The epistemic uncertainties are mostly concentrated at the higher loss levels, where a
factor of 3 is observed between the probabilities of the upper and lower bounds at SCL=100% (i.e.
2.04.10° vs 6.90.10”). However, the present results should come with a significant caveat, since only
seismic risk assessment has been the object of uncertainty quantification. The development of a
proper assessment method for the flood hazard along with the corresponding uncertainties should
be carried out in order to accurately quantify the uncertainty sources that are brought by the
different hazard types.
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Figure 17: Effect of all considered sources of epistemic uncertainties on the risk curve
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4.0 CONCLUSION

Deliverable 3.3 has detailed the various sources of uncertainty that are involved in the risk
assessment process for the different hazard types considered in the INFRARISK project (i.e. floods,
earthquakes and ground failures). The distinction between aleatory and epistemic uncertainties
allows the identification of parameters or which models require further research effort in order to
improve the accuracy of the global loss distribution.

The adoption of a Bayesian Network model through a virtual, yet realistic, proof-of-concept example
has led to a twofold result:

e The use of an exact inference algorithm provides access to an exact loss distribution, even in the
case of extreme events, as opposed to Monte Carlo simulation schemes. Thanks to this feature,
the effect of various sources of uncertainties can be quantified, by adding an evidence on the
Bayesian nodes of interest and observing the updated loss distributions.

e The Bayesian Network presented here has been used to study multi-risk interactions at both
hazard and fragility levels, thanks to the risk decomposition proposed by Selva (2013). By
changing the evidences in the BN (e.g. absence or not of the flood or earthquake events, change
of the occurrence rate of the earthquake events, etc.), the different risk factors such as single
risk, co-active risk, virtual risk and isolated risk, can be easily quantified by using the Bayesian
inference.

The study of the effect of the different uncertainty sources has revealed that aleatory uncertainties
due to the evaluation of the seismic hazard play an important part in the global risk assessment.
Especially, the spatial correlation of the intra-event variability is an essential component of the
analysis when considering a distributed system of interdependent components. It has been shown
that the global risk may be underestimated when omitting this spatial dependency. Regarding
epistemic uncertainties, their combined effect has also been found to be significant, especially for
low probability high consequence events, even though additional uncertainty sources should be
accounted for when performing a proper flood hazard assessment.

The use of the persistence time window AT, is critical in order to account for the risk interaction
between floods and earthquakes. These two hazard events are independent; however it is possible
to account for their joint occurrence within a given timeframe that would see flood-damaged
components being exposed to potential earthquakes. This time window has a huge effect on the risk
bias measure, which identifies the discrepancies between a multi-risk analysis with interactions and
superimposed single risk analyses. A bias in the order of 0.5%-1% has been estimated in the present
study, which may seem quite modest, especially when comparing with all the other uncertainty
sources involved. However, it should be noted that only three components in the considered
infrastructure system account for flood-earthquake interactions (i.e. the two bridges B1 and B3, and
the road segment exposed to slope failure). Further development of more interactions models
would then lead to a higher contribution from multi-risk interactions.

Finally, this work represents the conclusion of the INFRARISK Work Package 3, where all previous
tasks and deliverables have been assembled in order to come up with the example of a multi-risk
analysis (D3.1 for the hazard assessment, D3.2 for the fragility assessment and D3.4 for the single
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risk assessment). Its outcome will feed the different models and input assumptions that will be used
in the Integrated Decision Support Tool (IDST) in Work Package 7.
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