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Executive Summary 

Landslides are a destructive natural hazard which can cause damage and disruption to critical 

infrastructure networks. They are characterised by different types of movement, cause different 

types of damage and require different mitigation strategies. Landslides susceptibility maps (LSMs) 

show the spatial likelihood of landslide occurrence, which can be used to inform planning and 

mitigation strategies to protect infrastructure, property and reduce risk to lives. This reports 

presents a two-stage mapping technique to produce LSM and its types by using a data mining 

method for large heterogeneous regions.  Random Forest relates the historical occurrence of 

landslides and types to a suite of geomorphological conditioning factors which are though to control 

occurrence and types of landslides. Using the case study in region of Piedmont in northwest Italy, 

this work demonstrates the efficacy of the data mining approach to create highly accurate LSMs and 

identify the infrastructure that are highly susceptible to specific types of landslides. This two-stage 

mapping technique can be used to better inform decision makers looking to reduce the risk posed by 

landslides hazards.  

 

 

 

 

 

 

 

 

Technical note 

The purpose of this Deliverable is to develop a data mining approach to hazard prediction. A Support 

Vector Machine (SVM) algorithm was suggested in the proposal as it is an appropriate data-mining 

technique capable of predicting the likely location of future landslides given a historic record of 

landslide occurrence and a range of geomorphological data. For this reason, the Deliverable was 

named ‘Software packages of SVM-based modelling’, however, during model development other 

algorithms were tested. Preliminary empirical modelling results showed that the Random Forest (RF) 

algorithm provided more accurate predictions than SVM, therefore, RF is the algorithm used to 

complete the work. Although the data mining algorithm used to complete this work differs from the 

one proposed in the description of work, the overall workflow is unaffected.     
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1.0 INTRODUCTION 

This report presents the risk mapping of natural hazard (landslide) and its impact to critical 

infrastructure (transport network) by using the case study in region of Piedmont in northwest Italy. 

For the risk mapping, it focuses on developing landslide susceptibility map (LSM) and classifying the 

landslide types by using a data mining approach, Random Forest. By combining the risk map with the 

transport network, we could identify the potential hazards to critical infrastructure.  

Landslides are a natural hazard that can damage structures, jeopardise peoples lives and drastically 

change the landscape. Landslides can particularly affect critical infrastructure, especially road and 

rail networks which are likely to be exposed to hazards due to their spatial extent (Bui et al., 2014). 

Typically, part of the risk management strategy involves the development of a landslide 

susceptibility map (LSM) which shows the spatial likelihood of landslide occurrence (Fell et al., 2008).    

Empirical LSMs are founded on the principle that the location of preceding landslides was 

determined by a set of conditioning factors: geomorphological variables such as slope, geology and 

land use (Varnes, 1984). Models and algorithms are applied to these variables to extract a numerical 

relationship between conditioning factors and the occurrence of landslides. Creating empirical LSMs 

require data, primarily a landslide inventory. This is data which shows the location of previous 

landslides within a region, plus any other relevant data such as volume of material involved and 

speed of movement (Van Western et al., 2008). As well as geomorphological variables, the 

conditioning factors can include hydrological and man made variables (Ayalew, & Yamagishi, 2005) 

The issue here is that developing the numerical relationships between conditioning factors and 

multiple types of landslides can be difficult as geo-environmental variables will affect the occurrence 

of different landslides in different ways (Epifânio et al., 2014). This challenge, along with the 

increasing prevalence of geographical information systems (GIS) has led to the growing use of data 

mining models for LSM applications (Dai et al., 2001). These include Artificial Neural Networks, 

Support Vector Machines, Decision Trees and Random Forest. While these models typically require a 

large amount of data, advantage of a data-mining approach is that they are not subjective and can 

be applied to large geographical extents.  

Most case studies using data mining approaches, however, are at small-medium size (<5000 km²) or 

at a single catchment area and deal with a single type or limited number of landslide classes. This 

work aims to demonstrate that LSMs derived using data mining methods can be applied to a large 

heterogeneous areas containing a number of diverse landslide typologies. This is achieved by using  

a two-stage mapping procedure. The first is to produce a statistical LSM which treats all landslides as 

a single class, showing overall susceptibility. The second is to classify the most probable landslide 

type for each grid cell in the study area. By combining the two maps, it is possible to identify both 

highly susceptible areas and attribute the area with a landslide class. This has the benefit of 

presenting a large volume of information on a single map, which can be easily interpreted by 

planners and decision makers.  
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2.0 METHODOLOGY 

2.1 Random Forest 

The Random Forest algorithm is based on an ensemble of decision trees, which aim to classify data 

by recursive partitioning based on some explanatory variable. Decision trees use a set of binary rules 

to predict a target value, based upon a set of training data containing all data on the conditioning 

factors (represented by the root node). In this instance the target value is binary and represents the 

presence or absence of landslides. The algorithm determines both the conditioning factor which 

most accurately separates the data into landslide and non-landslide classes and the threshold value 

at which to split data.  

After first level splitting, the algorithm will search for the next splitting variable under each new 

internal node. Splitting will stop when an internal nodes contains data of only one class (i.e. all the 

data is either landslide or non-landslide). This becomes a terminal node and is classified as either 

landslide or non-landslide. If we wanted to predict new data using this model, there would be a lot 

of misclassification as the model is so finely tuned to a single dataset that it would not be generalise 

well. To ensure RF models can predict new data, they use an ensemble of decision trees. If the same 

data was used at the root node and at each split, each decision tree would be identical, making an 

ensemble pointless. For this reason, RF uses a different subset of the data to train each tree in the 

ensemble and limits the number of conditioning factors that can be used for splitting at each node. 

Predictions are made based on the majority vote of all trees in the forest (Breiman, 2001).  Bootstrap 

sampling is used to generate the random subsets of data, which are drawn from the full dataset with 

replacement.  

2.2 Data sampling and validation 

Assessing the quality of RF models requires validation with independent data. This involves 

comparing model predictions with observed data. The closer the predictions to the observed data, 

the better the model is said to perform. Typically, the accuracy is assed using a confusion matrix (e.g. 

Kavzoglu et al., 2014). For landslide susceptibility there are a number of issues with this approach. 

Validation requires samples from susceptible and non-susceptible areas to both train and validate 

the model. Sampling susceptible areas is relatively straightforward. Areas where landslides have 

occurred in the past can be considered to be susceptible. The areas in and around previous 

landslides provides the location of the susceptible samples. Non-susceptible locations can be 

considered as all areas beyond a buffer zone of the previous landslides. However, just because an 

area is not included within the landslide inventory doesn’t mean that it is not susceptible to 

landslides. It is possible that it has either experienced a landslide in the past that was not recorded in 

the inventory or it has no yet experienced a landslide but it is susceptible. Despite these caveats, this 

is still the most common approach to sampling non-susceptible areas (Park et al., 2013) 

The geoenvironmental data selected to be used as conditioning factors must be sampled to 

correspond with each susceptible and non-susceptible point. Inventory data and data on 

conditioning factors are usually stored as GIS layers made up of grid cells of a given resolution. Once 

susceptible and non-susceptible areas have been identified, sampling conditioning factors from 

corresponding spatial locations is a simple GIS operation. This procedure provides the data used to 
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train the RF models. For most data-mining modelling approaches, the total training dataset is split 

with approximately 70% of samples used to train models and the remainder used for validation. 

2.3 Study area 

To demonstrate the efficacy of RF for LSM and classification, the method has been applied to the 

case study region of Piedmont, a 25402 km² region in northwest Italy (Figure 2). This region is 

particularly appropriate as since 1950, in Italy alone the economic cost of landslides has been more 

than 53 billion Euros. Piedmont has been identified as being within a landslide ‘hotspot’ (Jaedicke et 

al., 2014). For this reason we would like to determine both the susceptibility to landslides and the 

type of landslides to which an area is susceptible.  

   

 

 

Figure 2: A) Location of Piedmont study area within Italy. B) Location and classification of landslide 

within the study area. 
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2.4 Landslide Inventory data and conditioning factors 

The landslide inventory used in this study is SiFRAP (Sistema Informativo Frane in Piemonte- 

Landslide information system in Piedmont) is a dataset containing 30439 landslides dating from the 

early 20th century to 2006, mapped at a scale of 1:10000 (Figure 1B) (Lanteri & Colombo, 2013). This 

is an update of the IFFI (Inventario dei fenomeni franosi in Italia- Inventory of Landslide in Italy) 

project (Amanti et al., 2001). Of the 30439 landslides, 20723 have been classified based on the type 

of mass movement involved. There are nine classes of landslides in the region: crash/rollover, sliding 

rotational/translational, slow dripping, fast dripping, complex, DGPV (a slow, complex deformation 

of rock), collapsing/overturning, widespread shallow and multiple. There is no definitive landslide 

classification, however this is the one devised by the Inventory of Landslide Phenomena in Italy (IFFI) 

adopeted by SiFRAP. A comprehensive description of the classification taxonomy is available from 

SiFRAP (2009). The location of the landslides in the inventory are shown in Figure 2B.  

 

2.5 Conditioning factors 

The range of conditioning factors used in this study are shown in Table 2.  

Map Description 

 

Elevation is commonly used in LSM as it 

is usually indicative of climatic and 

vegetation patterns. The DEM used in 

this study is a 20 m resolution raster 

showing elevation above sea level. 

Ranging from 61-4615 meters above 

sea level.    

0 25 5012.5 Km

¯

Elevation (M)
High : 4615

Low : 61
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Slope is the angle formed between any 

part of the surface of the earth and the 

horizontal. The angle is a prominent 

controlling factor on the shear stress 

experienced by earth and rock mass on 

a slope. This is on a 20 m grid derived 

from the DEM ranging between 0°-87°. 

 

The aspect of each grid cell will have a 

bearing on the amount of rainfall and 

intensity of rainfall it experiences, as 

well as the amount and intensity of 

solar radiation. Aspect is defined as the 

compass direction of a slope. From 0° 

to 360°, flat areas are assigned -1. 

0 25 5012.5 Km

¯

Slope (Degrees)
High : 86.728

Low : 0

0 25 5012.5 Km

¯

Aspect (Degrees)
High : 359.928

Low : -1
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Curvature can be thought of as the 

slope of a slope. This will affect both 

stress on the material on the slope and 

the movement of water across the 

slope surface.  Derived from the DEM 

on a 20m grid. The values range from -

510 to 192 

 The slope perpendicular to the 

direction of maximum slope. A positive 

value indicates the cell is part of a 

sidewardly concave slope. A negative 

value indicates that the slope is 

sidewardly convex. In the study areas 

this ranges from 59.9 to -214.5 

0 25 5012.5 Km

¯

curvature
High : 192

Low : -510.25

0 25 5012.5 Km

¯

Plan curvature
High : 59.9544

Low : -214.538
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This is the rate at which the slope 

gradient changes parallel to the 

direction of maximum slope. A positive 

value indicates the cell is part of an 

upwardly concave slope. A negative 

value indicates that the slope is 

upwardly convex. In the study areas 

this ranges from 295.7 to -192.3. 

 

Pennock landform classification, 

divided the study areas into 7 classes of 

three dimensional landform elements.  

(Pennock et al., 1987). Landform has 

been shown to strongly influence LSM 

(Schulz, 2007). 
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Profile curvature
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Topographic wetness index represents 

a hypothetical measure of the 

accumulation of water flow at any point 

within a river basin. This can be 

considered to represent the 

distribution of soil moisture in the 

region. This was derived from the DEM 

on a 100m grid. Values range from 3.9-

30.4. 

 

Building roads can destabilise slopes, 

leaving them predisposed to landslides. 

Furthermore, the vibrations caused by 

traffic can become a triggering 

mechanism. This was derived from the 

OpenStreetMap road network map of 

Italy using a GIS operation to calculate 

distance from a line. This produced a 

raster grid of 100 m resolution.  

0 25 5012.5 Km

¯

TWI
High : 30.3733

Low : 3.94445

0 25 5012.5 Km

¯

Distance from roads (M)
High : 4266.17

Low : 0
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Proximity to the stream network has 

been shown to influence susceptibility. 

Streams have the power to erode soil 

and apparent material (Gomez & 

Kavzoglu, 2005). This was derived from 

a river network map of Italy (available 

from ISPRA) using a GIS operation to 

calculate distance from a line. This 

produced a raster grid of 100 m 

resolution 

 

Represents vegetation and how the 

land is used, both of which can 

influence susceptibility. We use the 

CORINE land cover map 2006. A 

1:100,000 scale land cover map divided 

into 16 land cover classes in the region, 

produced by interpretation of Landsat 

TM and SPOT HRV satellite imagery 
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Distance from waterways (M)
High : 12000
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Land Cover
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Soils influence how water moves across 

the landscape. Some soils are more 

cohesive, others more prone to 

erosion. This will affect the conditions 

which trigger landslides and the type of 

landslide which occurs. World 

Reference Base (WRB) soil classification 

on a 1 km grid, divided in 15 classes in 

the region (Van Liedekerke et al., 2006) 

0 25 5012.5 Km

¯
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Lithology represents the geomechanical 

properties of bedrock and is a 

controlling factor in the structural and 

chemical propertied of soil. This study 

uses a 1 km raster grid showing the 

dominant parent material, divided in 12 

classes in the region (Van Liedekerke et 

al., 2006) 

 

A classification based on 

hydrogeological formations, which 

contain similar geological, 

hydrogeological, productivity and 

hydrogeochemical facies. This map is 

produced by ISPRA at 1:10000 scale, 

divided into 11 classes within the 

region. 
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Rainfall is generally considered as a 

triggering mechanism for landslides, 

however, it is rarely included in LSM. In 

a study area this large, the rainfall will 

be spatially variable and should 

therefore be considered as a 

predisposing factor (Catani et al., 2013). 

Here the average annual rainfall on a 20 

km² grid ranging from 684-2640 mm y-1. 

  Table 2: landslide conditioning factors maps and description   

 

3.0 RESULTS 

3.1 Landslide susceptibility 

The LSM produced by RF are shown in Figure 3. Figure 3 shows a classification, where the region is 

classified as either susceptible to landslides (red) or not susceptible to landslides (green). Across the 

region, susceptibility is highest in the mountainous areas in the north, west and south of the region 

and lowest in the alluvial plain in the centre and east. Validation of the LSM using independent data 

showed that the classification accuracy of the map was over 88%, which suggest that the RF method 

can be used to create highly accurate LSMs.  

0 25 5012.5 Km

¯

Average annual rainfall (mm)
High : 2640
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Figure 3: The landslide susceptibility map for Piedmont 
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Susceptibility maps can be used as part of hazards mitigation strategies. The amount of information 

shown on a LSM can be increased if we use RF to classify the probable types of landslides that will 

occur within a given region. Figure 4 shows the susceptible areas of Piedmont and the types of 

landslides to which these areas are susceptible. For example, these maps can be used to identify 

sections of the road network which would benefit from barriers to stop large rocks and debris 

affecting the road. As resources are limited, protecting the roads in this way needs to be focused on 

the most exposed areas. A landslide susceptibility map alone will not always be the most effecting 

tool for planning mitigation strategies as in this instance, it is necessary to identify specific types of 

landslides. For example, is a road passed through an area that was highly susceptible to slow 

dripping landslides, it probably would not benefit from these specific preventative measures.  

Figure 4: Example of landslide classification mapping to identify roads exposed to 

collapsing/overturning and crash/rollover type landslides.   

 

The advantage of this approach is that it conveys a lot of information in a way that is easy to 

interpret, which is critical for LSM applications (Guzzetti et al., 1999). Moreover, it can be tailored to 

focus on any area or to address any types of landslide-related problem. For example, when planning 

new developments it can be used to help select suitable routes for new infrastructure networks or 

help inform planners of the type of hazards that new structures may need to withstand.   
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3.2 Model run times 

Models were trained in R using the RandomForest package (Liaw & Wiener, 2002). The computer 

used to train the models had an Intel(R) Xeon(R) CPU E5520  @ 2.27GHz, 2261 Mhz, 4 Core(s), 4 

Logical Processor(s) and 12.0 GB installed physical memory (RAM). Training the model on a data 

frame with 335544 rows and 20 columns took 792.56 seconds. Making predictions for 2538135 

records took 105.77 seconds.  
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4.0 CONCLUSION 

Landslides are a destructive natural hazard which can cause damage and disruption to critical 

infrastructure networks. Landslides susceptibility maps (LSMs) show the spatial likelihood of 

landslide occurrence. These maps are used to inform planning and mitigation strategies which are 

responsible for protecting infrastructure, property and reducing risk to lives This work shows the 

development of an empirical LSM using a Random Forest data mining algorithm. This method uses 

the location of historical landslides and a suite of geomorphological data to predict the spatial 

likelihood of landslide occurrence in the Piedmont region. Using a Random Forest algorithm, this 

work demonstrates the efficacy of the data mining approach to create highly accurate LSMs for 

large, heterogeneous regions.  

Not all landslide are the same. They are characterised by different types of movement, cause 

different types of damage and require different mitigation strategies. To address this issue, RF also 

used to create a classification map which, in conjunction with the LSM, could be used to identify 

areas that are highly susceptible to specific types of landslides. This two-stage mapping technique 

can be used to better inform decision makers looking to reduce the risk posed by landslides hazards. 
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