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Executive Summary 

In the INFRARISK project, infrastructural systems (e.g. collections of roads, bridges, train-tracks, etc.) 

are modelled as probabilistic systems where individual components are represented by way of 

individual stochastics which express if these individual components are compromised damage-wise 

for a given hazard load. Probabilistic representations of a given infrastructural system are subjected 

to virtual shocks corresponding with some stress scenario. This allows us to gauge how the efficacy 

of the probabilistic representation has been compromised by the applied shocks and come to some 

estimate on the effects of possible stress scenarios that have not yet materialized.  

 

In this deliverable, a general stress test framework is offered up in which a stress test is a special 

instance of a risk assessment, where instead of marginalizing over the entire possible stress 

scenarios one specific stress scenario is chosen instead for which to gauge its potential effects.  

 

This stress test framework is simple enough on the conceptual side. On the practical side, however, 

when one wishes to implement this framework, things can quickly become non-trivial. For example, 

if our probabilistic system consists of N components, each of these components having M possible 

states, then the total density of states of the system as a whole will consist of N
M

 possible states. 

This is an instance of the well-known “curse of dimensionality” which will necessitate the use of 

sampling techniques the state probability distribution on the system level. In this deliverable, 

sampling methods are discussed by which stress tests may be evaluated on probabilistic systems 

which consist of a large number of stochastics.  

 

If the probabilistic system consists of stochastically dependent components then it is recommended 

to use the novel Nested Sampling algorithm in order to evaluate the dependencies between these 

stochastic components, whereas traditional Monte Carlo sampling method will suffice if the 

stochastics within a probabilistic system are independent. Also, a specific type of a stress scenarios 

are cascading effects scenarios. For Task 6.2 there has been developped the Probability Sort 

algorithm which allows one to model temporal and spatial uncertainties in cascading effect risk 

scenarios. 

 

The research results of this deliverable are relevant for all those, be they infrastructural managers or 

not, that wish to evaluate the state probability distribution of probabilistic systems that have been 

constructed as systems of stochastic components that are spatially and/or temporally dependent. 
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1.0 INTRODUCTION  

In this deliverable we give a general stress test definition as well as a discussion of a suite of 

algorithms that will allow one to apply this general stress test definition to probabilistic systems that 

consist of a large number of stochastic components. 

 

In Chapter 2 a general stress definition is given. This stress test definition is explicitly linked to the 

overarching risk assessment methodology proposed in work package 4 of the INFRARISK project.  

 

In order to illustrate the relevancy of the work presented in Chapters 4 through 8, a small case sudy 

is given in Chapter 3 for a system of 5 bridges of two different types, where an ensemble of fragility 

curves is derived for each bridge type, by taking not only into account (artificial) sampling 

uncertainty but also the (non-trivial) parameter uncertainty that invariable will occur in these 

problems. In this small case study Nested Sampling is used to take into account the dependencies 

between the fragility parameters. Probability maps for each bridge in the system may then be 

obtained by taking an ensemble of the conditional bridge probability maps over all the probalble 

fragility parameter combinations. Using these probability maps, which constitute a system of 

independent components/damage state probability distributions, we may use traditional Monte 

Carlo (MC) sample to come to a representative (i.e. having the greatest multiplicity) sample of 

damage state vectors.  

 

In Chapters 4, 5, and 6, it is recommended that for large systems of dependent components/ 

parameters the Nested Sampling be used to take into account these depedendencies. For large 

systems of independent compoents it is recommended to use traditional MC methods. 

 

Finally, a novel Probability Sort algorithm is presented in Chapter 7 and Appendix A, by which 

cascading effects may be modelled with a high degree of accuracy, as is demonstrated in Chapter 8. 

 

  



INFRARISK 

Deliverable D6.2   Stress Test Framework for Systems 

 

8 
© The INFRARISK Consortium   

2.0 A STRESS TEST DEFINITION 

2.1 Introducing Stress Tests 

A scenario is a possible future environment, either at a point in time or over a period of time. A 

projection of the effects of a scenario over the time period studied can address any kind of system, 

from local regions, to countries, to entire continents. To determine the relevant aspects of a possible 

future environment, one or more events or changes in circumstances may be forecast, possibly 

through identification or simulation of several risk factors. The effect of these events or changes in 

circumstances in a scenario can be generated from a shock to the system resulting from a sudden 

change in a single variable or risk factor. Scenarios can also be complex, involving changes to and 

interactions among many factors over time, as, for example, in cascading events (IAA, 2013).  

 

It can be helpful in scenario analysis to provide a narrative (story) behind the scenario, including the 

risks (i.e. triggering events) that generated the scenario. Because the future is uncertain, there are 

many possible scenarios. In addition, there may be a range of effects on a particular system arising 

from each scenario. The projection of the financial effects during a selected scenario will likely differ 

from those seen using the modeller’s best expectation of the way the current state of the world is 

most likely to evolve. Nevertheless, an analysis of alternative scenarios can provide useful 

information to involved stakeholders (IAA, 2013). 

 

Sensitivity considers the effect of a set of alternative assumptions regarding some scenario. This 

alternative scenario can be the result of a single or several alternative risk factors, occurring either 

over a short or long period of time. A scenario used for sensitivity testing usually represents a 

relatively small change in these risk factors or their likelihood of occurrence. A scenario with 

significant or unexpected adverse consequences is referred to as a stress scenario.  

 

A stress test is a projection of a particular system under a specific set of severe to moderately 

adverse conditions (i.e. stress scenarios). The forecast in the figure below represents the best case 

projection, deviations from which would constitute the effect of sensitivities and stress scenarios 

(where sensitivities are those scenarios that are close to the projected forecast scenario), Figure 2.1. 

 

 

Figure 2.1: Stress Scenarios (IAA, 2013) 
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While the study of the effect of likely scenarios is useful for business planning and for the estimation 

of expected profits or losses, the assessing of the impact of rare and/or catastrophic future events, 

or even moderately adverse scenarios can enhance a risk culture, as it can alert decision makers to 

potentially inconvenient truths and provide a framework to enable them to base their operational 

strategies and risk mitigation activities on a range of scenarios, rather than a single best-estimate 

projected forecasts. In the actuarial sciences stress testing is considered to be essential tools for 

effective risk management and prudential oversight (IAA, 2013). 

 

2.2 Why Perform Stress Tests? 

The purpose of stress testing is not so much to predict future events, but rather to stimulate 

stakeholders to be prepared in case a disruptive event should occur (IAA, 2013). Stated differently, 

stress tests are done to get an answer to the question “How much could be lost?” in some worst 

case scenario, rather than the question “How much is likely to be lost?” under the current status 

quo, (Blaschke et al., 2001). Stress tests help to show us the parts of the system that need to be 

strengthened, or, if this is not feasible, as the stress scenario is too severe to build against (e.g. "the 

big one", along the San Andreas fault), the post-disaster contingencies we need to prepared for 

should our stress scenario materialize.  

 

For an example of a successful stress test, in 2003 the regulators in Australia (APRA) conducted a 

stress test focusing on the domestic exposure of their banks and mortgage insurance companies to a 

decline in housing prices, leading to an equity shock. Based on the results of this stress test, APRA 

was able to implement regulatory safeguards that led them to avoid the issues faced by most 

jurisdictions following the collapse of the American mortgage market at the start of the financial 

crises in 2008-2009.  

 

For an example of a missed stress test opportunity, the Fukushima Daiichi plant levees were build to 

withstand typhoon related 5.7m wave heights, while the exceedance return period of 10m tsunamis 

was only a mere 36 years, as 14 tsunamis of at least 10m have been observed in the last 500 years 

on the Japanese west coast (Krauß and Berg, 2011). Had the Fukushima Daiichi event been studied 

by way of a tsunami stress testing exercise prior to it happeningthe event occuring, then one of the 

possible outcomes with probability greater than zero would have been the outcome that we are 

currently witnessing; the outcome where a large part of Northern Japan has been radioactively 

contaminated.  

 

In light of the fact that Fukushima Daiichi levees were only designed for typhoons, we find it 

plausible that a Fukushima Daiichi stress test would have compelled the relevant stakeholders to 

install also tsunamis typhoons, or, at the very least, move the power back-up from the cellar to the 

roof. Moreover, it is a distinct possibility that the Fukushima Daiichi incident escalated to a 

nationwide calamity, only because of the absence of simple emergency protocols, as a more timely 

depressurisation of the reactor coolant systems by the Fukushima Daiichi staff would have allowed 

for coolant injection by way of fire pumps, which might have helped to prevent cataclysmic core 

damage (Krauß and Berg, 2011). So it can be argued that a stress test exercise prior to the 2011 

tsunami might have given the Fukushima Daiichi stakeholders a timely warning to put such 

emergency protocols in play at their nuclear plant.  
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2.3 Stress Testing for Infrastructural Risk Managers 

In analogy with the actuarial stress test definition, an infrastructure stress test is defined as an 

analysis conducted under an unfavorable scenario, which is designed to determine whether there 

are inacceptable infrastructure related risks for a given unfavorable scenario. Stress tests may help  

detect objects that if “strengthened” through the execution of preventive interventions will greatly 

decrease the infrastructure related risk (i.e. hard engineering measures) and/or determine those 

non-engineering mitigation actions that will minimize the detrimental effects of a loss of 

functionality of the infrastructure (i.e. “soft” policy measures). 

 

In this deliverable we will propose a general framework by which to quantify stress tests
1
. The stress 

test framework, at its highest level of abstraction, is a sub-set of the general risk assessment 

framework which is discussed below. In a stress test one assumes that some extreme hazard event 

has actually occurred, whereas in a risk assessment the effects of all hazard scenarios are accounted 

for and weighted by their respective probabilities of occurrence. In what follows we will first give a 

general discussion of Infrarisk’s general risk assessment framework, as outlined in D4.2 (Heckl et al., 

2016), after which we will turn to stress tests, as a special class of risk assessments. 

2.3.1 The General Risk Assessment Framework  

The general risk management process proposed in Infrarisk’s D4.2 includes different sub-processes 

(Adey et al. 2014): the (1) problem identification process, (2) the system definition processes, (3) the 

risk identification process, (4) the risk analysis process, (5) the risk evaluation process, and (6) risk 

treatment. 

 

In the problem identification step the information need of the relevant stakeholders is specified, as a 

first outline is given of the type of hazards that are to be studied in a given area and their effects on 

the objects of interest. So, an example of a risk assessment problem identification would be the 

general question: ‘What dangers do earthquakes (type of hazards) pose to Bologna’s (area) ten-T 

road network (object of interest)?’ 

 

In the system definition step a system representation is constructed. A system representation is a 

model of some relevant part of reality and consists of all the relevant realisations of the stochastic 

(i.e. uncertain) processes within the investigated time period. It includes the consideration of 

assumptions as to how the system will react in certain specific situations, and drawing fixed system 

boundaries, where it is clear that the things outside the system being modelled are not being 

modelled; that is, a system representation includes sufficiently good representations of the hazards, 

objects of interest, and consequences, as well as the interaction between them, so that it can be 

reasonably certain that there is an appropriate understanding of the system and all the possible 

scenarios that might arise in the case of some hazard event.  

 

                                                           
1
 Note that our commitment to the quantitative over the qualitative should not be read as a dismissal of 

qualitative stress tests; far from it, for qualitative stress tests may serve their purpose very effectively. It is just 

that a choice had to be made, and the choice fell naturally on quantification, as mathematics is the common 

mode of discourse in engineering risk research. 
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So, a system representation typically will include the natural environment (e.g. amount of rain, 

amount of water in rivers), the physical infrastructure (e.g. the behaviour of a bridge when subjected 

to high water levels), and human behaviour (e.g. traffic patterns when a bridge is no longer 

functioning). Also, as it is necessary to model the system over time it will often be necessary to 

specifically model the spatial and temporal dependencies between events and activities with the 

investigated time period. An important example of spatially and temporally dependent events are 

the so-called cascading events (see Chapter 8). 

 

In WP4’s general risk assessment framework ‘risks’ are equated with outcome scenarios. All relevant 

outcome scenarios are enumerated, by way of the system representation which was constructed in 

the previous step, in the risk identification step. These outcome scenarios are then assigned 

probabilities and consequences, again, by way of the system representation which was constructed 

in the previous step, in the risk analysis step.  

 

In WP6’s stress testing framework the ‘risk identification’ and ‘risk analysis’ steps equate with one 

singular ‘construction the outcome probability distribution’ step. Outcome probability distributions 

are the information carriers of our quantitative risk analyses, as for a given outcome metric (e.g. 

costs of physical repairs to the network, delay times for network users, restoration durations for the 

network, etc.) outcome probability distributions (1) enumerate all possible outcomes , and (2) given 

a plausibility (i.e. probability) to each of these possible outcomes. Stated differently, outcome 

probability distributions are (very important) risk assessment outputs. For an example of a risk 

assessment output in a physical repair cost outcome metric, conditional on some hypothetical 

adverse river discharge scenario, see Figure 3.3 in the next Chapter.  

 

In the risk evaluation step the risk present in the outcome probability distribution, which was 

constructed in the preceding risk analysis step is communicated to and verified with the 

stakeholders. It is at this point in the general risk assessment process that stakeholders (i.e. decision 

makers) will be most likely to indicate whether or not the risk analysis needs to be redone with more 

detailed system representations, more sophisticated models and/or improved assumptions    

 

In the risk treatment step involves the selection of the best way to modify the system which is being 

analysed. The best way to modify the system may be comprised of one or more interventions. These 

interventions can include physical changes to the infrastructure, alteration of the natural 

environment, and/or activities to alter the human behaviour during or following a hazard event. The 

selection of the best way to modify the system involves balancing of costs and effort of 

implementation against the benefits derived, taking into consideration constraints such as legal, 

regulatory, and other requirements such as social responsibility and the protection of the 

environment.  

 

WP4’s risk evaluation and (the cost benefit part of the) risk treatment steps are the subject of D6.3.   

 

2.3.2 The General Stress Test Framework  

As already stated in the previous section, in a quantitative/probabilistic analysis the outcome 

probability distribution is the information carrier that tells us all we ever would want to know, as it is 
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that in the outcome probability distribution all the possible outcomes are (1) enumerated, and (2) 

given a plausibility (i.e. probability). Conditional outcome probability distributions are the 

information carriers in stress tests, whereas unconditional, marginalized outcome probability 

distributions are the information carriers in risk analyses.  

 

2.3.2.1 Stress Test Outputs 

A stress test output is a (range of) projected value(s) of some outcome metric under the assumption 

that some stress scenario actually will occur with certainty. If there is only the one possible outcome, 

then this outcome has a probability of 1.0. But if there is more than one projected outcome value, 

then, in principle, a probability distribution may be assigned over these outcomes. The stress output 

will then consist of, in probability theoretical terms, an outcome probability distribution which is 

conditional on the proposed stress scenario; i.e. a conditional outcome distribution. 

 

In a stress test we just construct the one outcome probability distribution for some given adverse 

scenario S , say, 

 

 ( )
( )( )0

,| ASOp S
i

        (2.1) 

 

where the ( )S
i

O  are the outcomes, for ( ) ( )SS
ni ,,1 K=  and 

( )0
A  is the action to keep the status 

quo. Whereas in a risk analysis we first construct outcome probability distribution for all the possible 

scenarios, be they adverse, neutral, or positive, say, 

 

 ( )
( )( )0,| ASOp ji jS         (2.2) 

 

where the ( )jS
i

O  are the outcomes, for 
( ) ( )jj SS

ni ,,1 K= , for scenarios 
jS , where mj ,,1 K= , and 

where S  in (2.1) is a member of the set of possible scenarios { }mSS ,,1 K  and 
( )0

A  is the action to 

keep the status quo. After which we weigh these conditional outcome probability distributions by 

the probabilities of their corresponding scenarios, in order to obtain the marginalized probability 

distribution: 

 

     ( )
( )( ) ( ) ( )

( )( )∑
=

=
m

j

jiji
ASOpSpAOp

jSjS

1

00 ,||      (2.3) 

 

For a simple example of a stress test output (2.1), see Figure 3.3, where a system of five bridges is 

stress tested, in terms of the physical repair costs, for some stress scenario which leads to an 

increase of flow (m
3
/s) around these bridges. 
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2.3.2.2 Selecting Stress (Test) Scenarios 

Stress tests can involve estimating the impact of a change in a single risk factor (a sensitivity test), or 

the effect of a simultaneous move in a group of risk factors (a scenario analysis). Stress scenarios can 

be based on historical scenarios, employing shocks that occurred in the past, or can be based on 

hypothetical/synthetic scenarios, constructed to take account of plausible changes in circumstances 

that have no historical precedent. Two other techniques that are often included under the rubric of 

stress testing are extreme value theory, which applies statistical analysis to the tails of return 

distributions, and the maximum loss approach, which estimates the combination of factors that 

would cause the largest loss to the system under consideration (Blaschke et al., 2001).  

 

The definition of an appropriate stress scenarios is a difficult task in that requires multiple persons 

bringing together their opinions and feelings into multiple coherent questions to be answered. The 

process of creating different stress scenarios is arguably the most difficult and controversial aspect 

of stress testing, as an ideal stress test needs to be relevant to the system under consideration. This 

requirement can impose significant resource costs, and involve a great deal of expertise and 

judgment by the parties involved (Blaschke et al., 2001). 

 

So, risk managers need to represent their stress scenarios as plausible, being clear as to the extent of 

“invention” being applied, and to have a forthright discussion of the boundaries of conditions and 

events that should be anticipated. The aim is for stakeholders to be active participants and to 

consider risk to the system under consideration when making strategic and tactical decisions. The 

(implied) stress level should not be so severe as to merit a dismissal as being too alarmist. But 

neither should it be so mild as to desensitize the stakeholders to the potential risks (IAA, 2013).  

 

Formulating a convincing and believable narrative or story may, on the one hand, be crucial to 

achieve buy-in from stakeholders into the stress scenarios, and, on the other hand, be helpful for the 

risk managers, as the formulation of a stress scenario becomes equivalent to the telling of a story 

(IAA, 2013): 

 

“And when it comes to influencing decisions and prompting action, the power of a ‘story’ 

should never be underestimated. A ‘plausible model or reality’ is exactly that, a ‘story’ that 

connects a variety of visible and readily understandable inputs to more or less extreme 

outcomes.” (Coherent Stress Testing, Ricardo Rebonato) 

 

Structured brainstorming sessions, such as conducted in general morphological analyses (Ritchey, 

1998) as well as in WP4 of the InfraRisk project, may be used to elicit this expert knowledge based 

narrative from the relevant experts and stakeholders. One possible instrument by which to structure 

a brainstorming session is the use of Delphi panels (see Appendix B) and Similarity Judgment. Both 

methodologies are used in WP8 of the InfraRisk project. Such a combined approach has been used 

for example to prioritize objects within the National Alert System in the Netherlands to prioritise the 

most vulnerable locations related to terrorism (Prak, 2009).  

 

It is also often useful to scan large databases, such as the one proposed in (Gavin and Martinovic, 

2014),  to have an idea as to what scenarios could be of particular interest. Descriptions of what can 
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be found in such databases in the case of infrastructure related risk due to natural hazards can be 

found in (Cheng and Taalab, 2014). Also, when using the extreme value theory approach, particular 

thought needs to be given here to the levels at which the stress tests need to be conducted; e.g. do 

you want to have a cumulative risk due to both floods and earthquakes below a threshold value, or 

do you want to have the risk due to floods below one threshold value, and the risk due to 

earthquakes below another threshold value, or both. 

 

2.3.2.3 Risk Acceptability and the Choosing Amongst Alternatives 

At this point it is worthwhile to explain, at least generally, what an acceptable level of risk is, beyond 

that it is one where the infrastructure manager is not required to execute interventions to reduce 

risk. The level of risk that is considered acceptable will typically varies from situation to situation, as 

risk acceptability is inversely related to both the number of cost efficient alternative courses of 

action that may reduce the risk and the extent of that cost efficiency; that is, the (un)acceptability of 

some current risk is something that has to be demonstrated by all parties involved. 

  

If there are no feasible (i.e. cost-efficient) alternatives to protect us from some risk, like for example 

a meteorite strike that wipes out all life on the Northern Hemisphere, then we simply will accept 

that risk, even if its consequences are off the scale. But if we learn, for example, that the Fukushima 

Daiichi core breach could have been prevented with either some relatively minor investments in 

tsunami levees, or some small engineering adjustments in which the coolant power supply was 

moved to the roof of the nuclear plant, or the instalment of some simple emergency protocols, then 

it will be felt by most that unacceptable risks were taken by the Fukushima Daiichi stakeholders.  

 

So, risk acceptability depends on whether there are possibilities to reduce the risk and how costly 

these are. This concept is sometimes referred to as the economically optimal level of risk, and was 

first proposed in the safety science domain by (van Danzig, 1956).  

 

In addition to the method of optimizing the economical level of risk, others, such as (Jonkman et al., 

2006), have proposed to determine acceptable risk levels by comparing the actual risk with norms 

on individual and societal risk, where individual risk indicates the distribution of the risk over the 

potentially affected individuals, and societal risk describes the relationship between frequency and 

the number of people suffering from a specified level of harm. The acceptable level of risk is 

considered to be one that is below that described in norms. 

 

In D6.3 there is presented an decision making protocol which takes its cue from the economics (i.e. 

cost-benefit) based risk approach, where risks are implicitly deemed unacceptable if the costs for a 

safer system are less than the estimated benefit in terms of risk reduction. If we let risk be some 

function of both consequences, { }nxx ,,1 K=x , and the probabilities of these consequences, 

{ }npp ,,1 K=p ; that is, 

 

 Risk = ( )px,f          (2.4)   
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Then it is argued in D6.3 that the risk function ( )px,f  may interpreted as a position measure on the 

corresponding outcome probability distribution:  

  

( )













=

.,

,,

,,

22

11

nn xp

xp

xp

p
M

x          (2.5) 

 

where the { }nxx ,,1 K=x  are mapped on the x-axis and the { }npp ,,1 K=p  are mapped on the y-

axis.  

 

For example, if we take as our risk function  ( )px,f  the expectation value: 

 

 ( ) ( )XEpxf
n

i

ii ==∑
=1

,px        (2.6)   

 

then we have that our risk index is a measure of the position of the most-likely scenario (of losses). 

Now, given the iniquitousness of (2.6) as a definition for risk, there must be some merit in taking the 

most-likely loss-scenario as our risk measure. An alternative, more cautious position is taken by the 

return period methodology, which takes as its risk index the measure the position of an unlikely (to 

be on the safe side of things) worst-case scenario:   

 

( ) ( ) ( )XstdkXEf +=px,        (2.7) 

 

where 

 

 ( ) ( )
2

11

2

1

, 







−== ∑∑∑

===

n

i

ii

n

i

ii

n

i

ii pxpxXstdpxXE   (2.8) 

 

and k  is the sigma-level that will give us the desired upper percentile value. Now, in D6.3 it is 

proposed that the position measure that takes into account the worst, most-likely, and best case 

scenarios: 

 

 ( ) ( ) ( ) ( )
3

,
XUBXEXLB

f
++

=px      (2.9) 

 

is the most all-round risk measure. Now, there are as of yet no guiding mathematical principles by 

which to choose between the alternative risk indices (2.6), (2.7), and (2.9). We have only general 

common sense principles, like those expounded in D6.3, to guide us when it comes to this decision 

theoretical degree of freedom (van Erp et al., 2016a). 
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Now, in practice we will have that a stress test is done order to check if alternative courses of actions 

are to be taken. More specifically, an infrastructure stress test is an analysis conducted under 

unfavorable scenarios which is designed to determine whether there are inacceptable infrastructure 

related risks. These tests are meant to detect system objects that if “strengthened” through the 

execution of (hard engineering and/or soft policy) preventive interventions will greatly decrease the 

infrastructure related risk.  

 

So the strengthening of one or more infrastructural system objects are the alternative actions which 

are open to the road manager, relative to a status quo where he only performs regular maintenance. 

Moreover, the road manager will have some budget constraint under which he has to decide 

whether or not to strengthen additional infrastructural objects or not. If we enumerate all the 

possible actions that a road manager might take as the set  

 

{ }mAAA ,,, 21 K .        (2.10) 

 

Then we have that each action 
kA  will map to a specific outcome probability distribution: 

 

 ( )













=

.,

,,

,,

|
22

11

kk nn

k

xp

xp

xp

Ap
M

x        (2.11) 

 

where 
kn  is the number of possible outcomes under the kth action 

kA . Now, we may compute for 

each of these outcome probability distributions (2.11), depending on our risk appetite, any of the 

risk indices (2.6), (2.7), and (2.9). For a given choice of risk index, the road manager then chooses 

that decision  

 

 { }mk AAAA ,,, 21 K∈         (2.12) 

 

which has the lowest risk (index) value of its corresponding outcome probability distribution (2.11). 

 

So, in this straightforward decision theoretical approach (Jaynes, 2003), no threshold values are 

needed. All that needs to be done is: 

 

1. An enumeration of all the possible action (2.10), 

2. The construction of the corresponding outcome probability distributions (2.11), 

3. A commitment to one of the risk indices either (2.6), (2.7), or (2.9), 

4. A minimization of the chosen risk index over the set of possible actions (2.10). 

 

For an actual demonstration of this approach, see D6.3. 

 

So, if we make explicit the fact that the decision of whether or not to accept a certain risk must be 

against the backdrop of some set of alternative actions, we may bypass the threshold definition 
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problem. Moreover, by doing so, we have at our disposal an approach to risk-based decision making 

for critical infrastructures.  
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3.0 QUANTIFYING THE EFFECT OF STRESS SCENARIOS IN TRANSPORT SYSTEMS

We provide here a simple example of how 

bridges. This chapter acts as a step

in Chapters 4, 5, and 6. 

 

3.1 A System Description 

Let us consider the following road network with 5 components (bridges

3.1. 

 

  

 

 

We assume that bridges 1, 2, and 3 are bridges of type I and bridges 4 and 5 of type II. Each type of 

bridge has its own characteristics and, as a consequence, will behave differently under different 

scour conditions; that is, bridges of type I are considered to be more resistant to scour than those of 

type II.  

The scour load for a given bridge is considered to be some limit state function of some discharge 

value Q  measured in the vicinity of the bri

limit state function forQ , we may  determine for (increasing) discharge values 

scour load probability distribution (Gehl and D’Ayala, 2015; 

load probability distributions are connected to some damage state model by way of loading 

thresholds, then we may compute (on the assumptions that our limit state function and damage 

state model are valid) for a given discharge value 

either one of the damage states.

 Stress Test Framework for Systems

 

EFFECT OF STRESS SCENARIOS IN TRANSPORT SYSTEMS

a simple example of how a stress test may be evaluated for a simple system of 

as a step-by step illustration of the more technical material that will follow 

Let us consider the following road network with 5 components (bridges over a river), Fig

We assume that bridges 1, 2, and 3 are bridges of type I and bridges 4 and 5 of type II. Each type of 

bridge has its own characteristics and, as a consequence, will behave differently under different 

at is, bridges of type I are considered to be more resistant to scour than those of 

The scour load for a given bridge is considered to be some limit state function of some discharge 

measured in the vicinity of the bridge (e.g. upstream, downstream, etc.). By specifying a 

, we may  determine for (increasing) discharge values Q

scour load probability distribution (Gehl and D’Ayala, 2015; D’Ayala and Gehl, 2015). If these scour 

load probability distributions are connected to some damage state model by way of loading 

thresholds, then we may compute (on the assumptions that our limit state function and damage 

n discharge value jQ  a corresponding probability of a bridge being in 

either one of the damage states.  

Figure 3.1: Bridge System 
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EFFECT OF STRESS SCENARIOS IN TRANSPORT SYSTEMS 

luated for a simple system of 

technical material that will follow 

over a river), Figure 

 

We assume that bridges 1, 2, and 3 are bridges of type I and bridges 4 and 5 of type II. Each type of 

bridge has its own characteristics and, as a consequence, will behave differently under different 

at is, bridges of type I are considered to be more resistant to scour than those of 

The scour load for a given bridge is considered to be some limit state function of some discharge 

dge (e.g. upstream, downstream, etc.). By specifying a 

jQ  thecorresponding 

D’Ayala and Gehl, 2015). If these scour 

load probability distributions are connected to some damage state model by way of loading 

thresholds, then we may compute (on the assumptions that our limit state function and damage 

a corresponding probability of a bridge being in 
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So, if there are ( )1+n  damage states, of which the zeroth state is the “undamaged”-state,   

ni ,,1,0 K=  , and if we have m  discharge values jQ , for mj ,,1 K= , then we may determine, by 

way of a limit state function the probability ijp  of being in damage state i  given the discharge value 

jQ . If we do not have direct access to the probabilities ijp , then, alternatively, we may also sample 

the limit state function, in order find the number of realisations of bridge damage  ijZ  in ijN  

independent samples (Gehl and D’Ayala, 2015; D’Ayala and Gehl, 2015). Note that this later 

approach will introduce additional sampling uncertainty, as we determine ijp  by way of a sampling 

approach frequency and not analytically. But this additional sampling uncertainty may be removes if 

we let ∞→ijN .   

 

3.2 The Probability Model 

As the basis for our failure probability model we may take probit functions for each of the 3,2,1=i  

actual damage states: 

 

 ( ) ( )








Φ=

β

α
βα i

i

Q
QiP

ln
,,| ,  for 3,2,1=i ,   (3.1) 

 

where the parameters 1α , 2α , 3α , and β  are the so-called fragility parameters. The probability of 

being in (the un)damage state 0=i  then is 
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the probability of being in damage state 1=i  is 
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the probability of being in damage state 2=i  is 
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the probability of being in damage state 3=i  is 

 

( ) ( )
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In order to evaluate the probabilities of being in one of the damage states for a given river discharge 

Q , we need to determine the fragility parameters 1α , 2α , 3α , and β . 

 

3.3 Estimating Fragility Parameters 

3.3.1 Fragility Parameter Estimation for Type I Bridges 

Let us assume that for the bridge of type I we have 10 discharge values jQ , for 10,,1 K=j . Let us 

also assume that we sample the limit state function for each discharge value and each damage state, 

starting from damage state 1=i , 100=N  times in order to determine each time the number of 

realizations ijZ  that are in the pertinent damage states 1=i , 2=i  , and 3=i , respectively. In 

Table 3.1 we give a possible realization of such a sampling exercise. 

 

 
jQ  jZ1  jZ2  jZ3  

j = 1 10 0 0 0 

j =2 39 10 0 0 

j =3 78 30 3 0 

j =4 156 60 10 0 

j =5 312 100 30 3 

j =6 625 100 60 10 

j =7 1250 100 100 30 

j =8 2500 100 100 60 

j =9 5000 100 100 100 

j =10 10000 100 100 100 

Table 3.1: Type I Bridge (discharge values and associated number of damage state realisations)  

 

Based on this data, we can specify the fragility-parameter likelihood model (Shinozuka et al., 2003): 
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where Φ  is the symbol of the cumulative standard normal distribution. If we assign the following 

non-informative  prior to the fragility-parameters (Jaynes, 1968) 

 

 ( )
βααα

βααα
321

321

1
,,, ∝p ,      (3.4) 

 

Then we may combine (3.1) and (3.2) into the posterior probability distribution (Jaynes, 2003) 
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      ( )
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where the data D  consists of the set of inputted flow discharges { }
jQ  and the set of observed 

number of failure realisations { }
ijZ  in  100=N  trials, for 3,2,1=i  and 10,,1 K=j , as shown in 

Table 3.1. 

 

By way of the Nested Sampling algorithm, we may obtain a univariate representation for the fragility 

parameter probability distribution (3.5) which allows us to evaluate the mean and standard 

deviation vectors, and the correlation-matrices of the fragility parameters (see Chapters 4, 5, and 6): 

 

 99.107
1

=αµ ,    62.421
2

=αµ ,    181651
3

.µ
α

= ,    7008.0=bµ ,  (3.6a) 

 81.5
1

=ασ ,       54.21
2

=ασ ,        1166
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.
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=σ ,    0273.0=bσ ,  (3.6b)  

 

And 
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104.005.003.0

04.0110.001.0

05.010.0102.0

03.001.002.01

corr .     (3.6c) 

 

From the correlation matrix (3.6c) it can be seen that the fragility parameters values are only 

somewhat correlated with each other, where we note that uncorrelatedness does not imply 

independence, as the correlation measure is a linear dependence measure; i.e. there are all kinds of 

non-linear depdencies conceivable which have a correlation measure of zero.  

 

As the probabability distribution (3.5) cannot be easily factorized in the product of four independent 

probability dsitributions, one will need to use the univariate Nested Sampling representation of 

(3.5), say, 

 

 ( )I Type,|,,, 1321 DapNS βαα ,       (3.7) 

 

where 1D  is as in Table 1 and (3.7) itself is a collection of probability weighted fragility parameter 

vectors, in order to take into account the fragility parameter uncertainty, (see Chapter 6). 

 

3.3.2 Fragility Parameter Estimation for Type II Bridges 

In out hypothetical problem, we have that the type II are more vulnerable to scour. For the bridge of 

type II, we use the same 10 discharge values jQ  that were used in Table 1, where we sample from 

the same limit state function for each discharge value and each damage state, in order to determine 
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each time the number of realizations ijZ  that are in the pertinent damage states 1=i , 2=i  , and 

3=i , respectively. In Table 3.2 we give a possible realization of such a sampling exercise. Note that 

the difference in the number of ijZ  realizations, relative to Table 3.1, are due to the fact that the 

damage state model for a type II bridge will set all the damage state thresholds lower, as these types 

of bridges are more vulnerable to scour loading. 

 

 
jQ  jZ1  jZ2  jZ3  

j = 1 10 10 0 0 

j =2 39 30 3 0 

j =3 78 60 10 0 

j =4 156 100 30 3 

j =5 312 100 60 10 

j =6 625 100 100 30 

j =7 1250 100 100 60 

j =8 2500 100 100 100 

j =9 5000 100 100 100 

j =10 10000 100 100 100 

Table 3.2: Type II Bridge (discharge values and associated number of damage state realisations) 

 

By way of the Nested Sampling algorithm, we may obtain a univariate representation for the fragility 

parameter probability distribution (3.5) which allows us to evaluate the mean and standard 

deviation vectors,  and the correlation-matrices of the fragility parameters (see Chapter 6): 
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And 
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Again, from the correlation matrix (3.8c) it can be seen that the fragility parameters values are only 

somewhat correlated with each other. 

 

As the probabability distribution (3.5) cannot be easily factorized in the product of four independent 

probability dsitributions, one will need to use the univariate Nested Sampling representation of 

(3.5), say, 

 

 ( )II Type,|,,, 2321 DapNS βαα ,      (3.9) 
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where 2D  is as in Table 3.2 and (3.9) itself is a collection of probability weighted fragility parameter 

vectors, in order to take into account the fragility parameter uncertainty, (see Chapter 6). 

 

3.4 Connecting Fragility Parameter Estimates to Damage State Probabilities 

Using the Nested Sampling proxies (3.7) and (3.9), we may take into account, by way of the Law of 

Total Probability and the fragility parameter uncertainty in (3.2): 

 

      

( ) ( )
( )

( ) ( )
( )
∑

∑

=

=

βαα

βαα

βααβαααπ

βααππ

,,,

1321321

,,,

13211

321

321

I Type,|,,,,,,,|

I Type,,|,,,,I Type,,|

a

NS

a

DapQi

DQaiDQi

 (3.10a) 

 

and, likewise, 
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 (3.10b) 

 

 

3.5 Computing  a Damage State Probability Map for a Stress Scenario 

So, going back to Figure 3.1, we now will proceed to evaluate some stress scenario that will lead to 

elevated flood discharges throughout the river; that is, elevated flood discharges are predicted in the 

vicinity of the bridge, Figure 3.2. The fragility parameter weighted damage state probabilities for the 

type I bridges are given as, Figure 3.2 and (3.10a), 

 

( ) [ ]0446.05522.03885.00147.0I Type,,500| 11 == Dqiπ ,  (3.11a)  

( ) [ ]0322.05056.04410.00212.0I Type,,450| 12 == Dqiπ ,  (3.11b) 

( ) [ ]1109.06547.02304.00040.0I Type,,700| 13 == Dqiπ ,  (3.11c) 

 

and the fragility parameter weighted damage state probabilities for the type II bridges are given as, 

Figure 3.2 and (3.10b), 

 

( ) [ ]0840.05966.03106.00089.0II Type,,300| 24 == Dqiπ ,  (3.11d) 

( ) [ ]2789.06176.01027.00008.0II Type,,550| 25 == Dqiπ ,  (3.11e) 
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where the damage state probabilities are ordered as 3,2,1,0=i ; that is, for the stress scenario that 

gives us river discharge values as in Figure 3.2, all the bridges have the largest probability to be in 

damage state 2.  The resulting probability map is given in Table 3.3. 

 

 

 

 

 

 

 i = 0 i = 1 i = 2 i = 3 

Bridge 1 0.0147 0.3885 0.5522 0.0446 

Bridge 2 0.0212 0.4410 0.5056 0.0322 

Bridge 3 0.0040 0.2304 0.6547 0.1109 

Bridge 4 0.0089 0.3106 0.5966 0.0840 

Bridge 5 0.0008 0.1027 0.6176 0.2789 

Table 3.3: Damage State Probability Map of Bridge System under Stress Scenario in Figure 3.2 

 

 

3.6 Assigning Probabilities to Damage State Vectors 

With the parameter weighted damage state probabilities in (3.11) we may assign probabilities to all 

the 102445 =  possible damage state vectors of the bridge system in Figure 3.1. For example, the 

probability of the damage state where the bridges 1, 2, and 3 are in damage state 2=i   and the 

bridges 4 and 5 are in damage state 3=i , that is, 

 

( ) ( )332221 =x ,  

Figure 3.2: River Discharge Stress Scenario 
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is found by taking the product of the probabilities, Table 3.3, 

 

 

( )( ) ( )( )( )( )( )

.0043.0

2789.00840.06547.05056.05522.0scenario stress|1

=

=xp

  (3.12a) 

 

The most likely damage state vector is the system state where all the bridges are in the damage 

state  2=i , 

 

( ) ( )222222 =x , 

 

which has a probability of, Table 3.3, 

 

 

( )( ) ( )( )( )( )( )

.0673.0

6176.05966.06547.05056.05522.0scenario stress|2

=

=xp

  (3.12b) 

 

The least likely damage state vector is the system state is the system state where all the bridges are 

in the undamaged state  0=i , 

 

( ) ( )000003 =x , 

 

which has a probability of, Table 3.3, 

 

 

( )( ) ( )( )( )( )( )

.1088.8

0008.00089.00040.00212.00147.0scenario stress|

12

3

−×=

=xp

  (3.12c) 

 

Note that given the chosen stress scenario, the system state probabilities are computed as the 

product of independent probability components; that is, given the values of the bridge relevant river 

discharge values Nqqq ,,, 21 K , Figure 3.2, the probability of a damage state vector consisting of N  

components is the product of the probabilities of the N  components in that state vector (3.12).  

 

This independence of the damage state probabilities of the separate components will greatly 

facilitate the computational effort needed to come to a set of representative samples, by which we 

may evaluate the consequences of the stress scenario in Figure 3.2, as this independence allows us 

to bypass the need for Nested Sampling and revert to traditional MC sampling, where the 5 

probability distributions (3.11) are sampled in sequentially in order to come to representative (i.e. 

having the greatest multiplicity) damage state vectors . 
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3.7 Assigning Direct Repair Costs to Damage State Vectors 

Both type of bridges will have their own associated repair costs once they reach one of the damage 

states 1≥i , Table 3.4. 

 

 i = 0 i = 1 i = 2 i = 3 

Bridge 1 0 10.000 50.000 1.000.000 

Bridge 2 0 10.000 50.000 1.000.000 

Bridge 3 0 10.000 50.000 1.000.000 

Bridge 4 0 6.000 24.000 480.000 

Bridge 5 0 6.000 24.000 480.000 

Table 3.4: Damage State Repair Cost Map of Bridge System under Stress Scenario in Figure 3.2 

 

With the damage state repair costs we may assign a repair cost to all the 102445 =  possible damage 

state vectors of the bridge system in Figure 3.1. For example, the repair cost of the damage state 

where the bridges 1, 2, and 3 are in damage state 2=i   and the bridges 4 and 5 are in damage state 

3=i , that is, 

 

( ) ( )332221 =x ,  

 

is found by taking the sum of the repair costs, Table 3.4, 

 

 

( )( )
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 (3.13a) 

 

The most likely damage state vector is the system state where all the bridges are in the damage 

state  2=i , 

 

( ) ( )222222 =x , 

 

which has a probability of, Table 3.3, 

 

 

( )( )

.000.198

000.24000.24000.50000.50000.50scenario stress|
2

=

++++=xc

 (3.13b) 

 

The least likely damage state vector is the system state is the system state where all the bridges are 

in the undamaged state  0=i , 

 

( ) ( )000003 =x , 

 

which has a probability of, Table 3.3, 
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( )( )

.0

00000scenario stress|
3

=

++++=xc

     (3.13c) 

3.8 Evaluating the Repair Cost Probability Distribution 

The mean and standard deviations of the repair costs of the separate bridges are given in Table 3.5, 

as computed by way of the values in Tables 3.3 and 3.4. 

 

Bridge 1 2 3 4 5 

mean repair cost 760951 =µ  618902 =µ  1459393 =µ  565024 =µ  1493105 =µ  

std. repair cost 2005701 =σ  1722702 =σ  3021003 =σ  1285104 =σ  2057305 =σ  

Table 3.5: Mean and Standard Deviation of Repair Costs of Respective Bridges in Figure 3.2 

  

The mean and standard deviation of the repair cost of all the bridges then is given as, Table 3.5, 

 

 489740
5

1

==∑
=i

itotal µµ ,  469050
5

1

2 == ∑
=i

itotal σσ .  (3.14) 

 

For comparison, if we take a mere 100 MC samples, then we find the sample estimates  

 

 515200=totalX ,   462340=totalS ;   (3.15a)  

 

if we take 1000 MC samples, then we find the sample estimates 

 

 831744=totalX ,   463410=totalS ;   (3.15b) 

 

and if we take 10.000 MC samples, then we find the sample estimates 

 

 863804=totalX ,   670504=totalS .   (3.15c) 

 

It can be seen that the mean and standard deviation of the MC sampled total repair costs, (3.15), 

quickly converge to the true population values (3.14). The total repair cost histogram of 1.000.000 

MC samples is given as in Figure 3.3. The frequency distribution in Figure 3.3 has a mean and 

standard deviation of 

 889604=totalX ,   468900=totalS .   (3.16) 
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Figure 3.3: Frequency Distribution of Total Rep

 Stress Test Framework for Systems

 

 

Frequency Distribution of Total Repair Costs under the Stress Scenario in Figure 3.2  
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air Costs under the Stress Scenario in Figure 3.2   
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4.0 UNIVARIATE REPRESENTATIONS OF MULTIVARIATE PROBABILITY DISTRIBUTIONS  

We now discus how to represent highly multivariate probability distribution functions on the two 

dimensional plane (Skilling, 2004), as this will lay some of the groundwork for the upcoming 

discussion of the Probability Sort and Nested Sampling algorithms. The latter algorithm was 

instrumental in the evaluation of the case study in Chapter 3, whereas the former algorithm will 

allow one to model cascading effects stress scenarios. 

 

4.1 Univariate Representations 

Say we wish to numerically evaluate the integral of the bivariate normal distribution ( )Σ,µMN

where 

 

 







=

0

0
µ ,  and  









−

−
=Σ

96.137.1

37.196.1
,   (4.1a) 

 

or, equivalently, 

 

 ( )
( ) ( )





++−

−
= 22

2

4.1
2

1
exp

2

7.01
, yxyxyxp

π
,    (4.1b) 

 

where 5,5 ≤≤− yx , Figure 4.1.  

 

  

  

 

 

Then the total volume under the curve ( )yxp ,  in Figure 4.1 is given by the integral  

 

 
( ) ( ) 9993.04.1

2

1
exp

2

7.01
5

5

5

5

22

2

=







++−

−
∫ ∫
− −

dydxyxyx
π

.    (4.2) 

 

Figure 4.1: Graph of p(x, y) 
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We may evaluate the integral (4.2) through brute force. We partition the yx, -plane in little squares 

with area dydx , then define the centre of these areas as ( )
kj

yx ~,~
, for 20,,1K=j , 20,,1K=k , and 

compute the strips of volume jk
V  as 

 

 ( ) dydxyxpV kjjk
~,~= .        (4.3) 

 

In Figure 4.2 we give all the volume elements jk
V  together: 

 

 
 

 

 

The total volume under the curve ( )yxp ,  may be approximated as 

 

 9994.0
20

1

20

1

==∑∑
= =j k

jk
Vvolume .       (4.4) 

 

Now, we may map these 3-dimensional volume elements jk
V  to corresponding 2-dimensional area 

elements 
i

A . This is easily done by introducing the following notation 

 

dydxdw= ,  ( ) ( )[ ] ( )
kjii yxpyxpwp ~,~~,~ == ,    (4.5) 

 

where index i  is a function of the indices j  and k : 

 

( ) kji +−≡ 201          (4.6) 

 

and 400,,1 K=i . Using (4.5), we may rewrite (4.3) as 

 

 ( ) ( )[ ]dwyxpdwwpA
iii

~,~== .      (4.7) 

 

In Figure 4.3 we give all the 400 are elements 
i

A  together: 

Figure 4.2: Volume Elements of p(x, y) 
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Since (4.7) is equivalent to (4.3), we have that the mapping of the 3

jk
V  to their corresponding 2-dimensional area elements 

that is, 

 

 VAarea
j k

jk

i

i
== ∑∑∑

= ==

20

1

20

1

400

1

 

We now may, trivially, rearrange the elements 

Figure 4.4. 

 

 

Note that the horizontal axis of Figure

collection of rectangular area elements ordered in one of many possible configurations. Now all 

these rectangular elements have a base of 

elements we might view Figure 

( )wg , where 1000 ≤≤ w , as displayed in Figure 

Figure 4.3: Area Elements of 

Figure 4.4: Ordered Area Elements of 

 Stress Test Framework for Systems

 

  

3), we have that the mapping of the 3-dimensional volume elements 

dimensional area elements 
i

A  has not led to any loss of information; 

volume= .     

We now may, trivially, rearrange the elements 
i

A  in Figure 4.3 in descending order, so we obtain 

 

Note that the horizontal axis of Figure 4.4 is non-dimensional. This is because we are looking at a 

ection of rectangular area elements ordered in one of many possible configurations. Now all 

these rectangular elements have a base of 25.0== dydxdw , being that there are 400 area 

elements we might view Figure 4.4 as a representation of some monotonic descending function 

, as displayed in Figure 4.5.  

Area Elements of p(x, y) 

Ordered Area Elements of p(x, y) 
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dimensional volume elements 

has not led to any loss of information; 

 (4.8)  

3 in descending order, so we obtain 

dimensional. This is because we are looking at a 

ection of rectangular area elements ordered in one of many possible configurations. Now all 

, being that there are 400 area 

nic descending function 
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What we have accomplished is that we have mapped 3

of the bivariate probability distribution 

4.3), after which we have rearranged these area elements in descending order, (Figure 

get a monotonic descending ‘function’ 

the pertinent probability density information is retained, as every point on Figure 

corresponds with a ( )yx, -coordinate. 

thus reduced to its corresponding monotonic descending univariate representation 

2004), where it is understood that every point on the univariate 

in the multivariate x -domain.  

 

4.2 Retention of Pertinent Probability 

If we have some function f  which 

probability distribution (4.1), then the 

(4.3)-(4.8), 

 

 

( )[ ]{ } ([

[

[{

([

,

∫

∑

∑∑

∫∫

=

=

≈

=

wf

f

xfyxfE

i

j k

q

  

Figure 4.5: Function g(w); Ordered Univariate Rep
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What we have accomplished is that we have mapped 3-dimensional volume elements, (Figure 

of the bivariate probability distribution p , (Figure 4.1),  to 2-dimensional area elements, (Figure 

3), after which we have rearranged these area elements in descending order, (Figure 

get a monotonic descending ‘function’ g , (Figure 4.5), and in going from Figure 

the pertinent probability density information is retained, as every point on Figure 

coordinate. Any k-variate function probability distribution 

thus reduced to its corresponding monotonic descending univariate representation 

, where it is understood that every point on the univariate w-axis corresponds with some 

 

robability Density Information 

which takes as its arguments x  and y , which have 

.1), then the q
th

 order moment of the function f  may be evaluated as, 

)] ( )

( )[ ]

( )[ ]}

)] ( ) ,

~,~

~,~

,,

dwwgw

Ayx

Vyxf

dydxyxpyx

q

i

q

i

jk

q

kj

q

    

); Ordered Univariate Representation of p(x, y) 
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dimensional volume elements, (Figure 4.2), 

dimensional area elements, (Figure 

3), after which we have rearranged these area elements in descending order, (Figure 4.4),  so as to 

going from Figure 4.1 to Figure 4.5 all 

the pertinent probability density information is retained, as every point on Figure 4.5’s w-axis 

variate function probability distribution ( )xp  may be 

thus reduced to its corresponding monotonic descending univariate representation ( )wg  (Skilling, 

axis corresponds with some point 

, which have been assigned the 

may be evaluated as, 

 (4.9) 
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where it is understood that every 

coordinate. 

 

Now, if the function f  takes as its inputs arguments that admit a probability distribution, then one 

may map this uncertainty regarding the input arguments to an uncertainty regarding th

corresponding  f  values. For example, 

 

 ( )[ ]yxfEf ,=µ , 

 

whereas the standard deviation of 

 

  ( )[ ]{ }2
, yxfEf −=σ

 

So, by going from the standard multivariate probability distribution 

univariate representation ( )wg

former is retained in the latter.  

 

4.3 Generating Representative 

4.3.1 MC-Sampling 

If we want to obtain a representative sample of 

do this by simply Monte Carlo (MC) 

sorted univariate representation 

 

 

 

Figure 4.6: Cumulative Distribution Function (CDF) of 

 Stress Test Framework for Systems

 

where it is understood that every w  in (4.9) points to (i.e. is a placeholder for)

takes as its inputs arguments that admit a probability distribution, then one 

may map this uncertainty regarding the input arguments to an uncertainty regarding th

values. For example, the expectation value f  (i.e., 1=q ) is given as (

      

whereas the standard deviation of f  is given as (4.9) 

( )[ ]{ }2
, yxfE− .    

y going from the standard multivariate probability distribution ( yxp ,

) , Figure 4.5, all the pertinent probability density information 

 

epresentative Samples 

we want to obtain a representative sample of n  realizations from (4.1), Figure 

Monte Carlo (MC) sampling the cumulative distribution function of the 

univariate representation ( )wg  in Figure 4.6 for n  consecutive times. 

   

Cumulative Distribution Function (CDF) of w 
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in (4.9) points to (i.e. is a placeholder for) a  specific ( )yx, -

takes as its inputs arguments that admit a probability distribution, then one 

may map this uncertainty regarding the input arguments to an uncertainty regarding the 

) is given as (4.9)   

 (4.10) 

 (4.11) 

) , Figure 4.1, to its 

ity density information in the 

Figure 4.1, then we may 

function of the probability 



INFRARISK 

Deliverable D6.2   Stress Test Framework for Systems 

 

34 
© The INFRARISK Consortium   

A MC sample is obtained as follows. Let u  be random realisation from the unit uniform probability 

distribution ( )1,0U . Then, for a given u  on the y-axis of Figure 4.6, we look up the corresponding 

iw , 400,,2,1 K=i , value on the x-axis, where it is understood that this iw  value is a placeholder 

for the probability sorted coordinate ( )
i

yx ~,~ . This coordinate ( )
i

yx ~,~  is the representative MC-

sample we are looking for.  

 

4.3.2. Staircase Sampling 

Alternatively, if we want to control for sampling the same coordinate ( )
i

yx ~,~  more than once, we 

may construct the cumulant staircase (4.7): 

 

 

( )

,
1

1

∑

∑

=

=

+=

+=

k

i

i

k

i

ik

Anu

dwwgnuT

        (4.12) 

 

for 400,,2,1 K=k , and where u  is again some random realisation from the unit uniform 

probability distribution ( )1,0U . If the staircase 
kT  rises for the first time above either of the integer 

values, 1, 2, 3, … , n , then record the value k  and take aside the corresponding coordinate vector 

( )
k

yx ~,~ ; see (3.3). Also, in order to avoid a repeated sampling of the same coordinate, we let  

 

( )ii A
n

max

1
≤ .         (4.13) 

 

This will leave us with a representative Monte Carlo sample of ( )yx, -coordinates (Sivia and Skilling, 

2006). For example, if we set 35=n , then we may obtain from Figure 4.7 the staircase sampler 

(4.12) which is displayed in Figure 4.7.  
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If we zoom in to 30,,2,1 K=k , then we may see the staircase sampler in action 

fifteenth, twentieth sample points, which map respectively, to

( )
5

~,~ yx , ( )
11

~,~ yx , ( )
19

~,~ yx , and 

 

 

 

By way of the staircase sampler, we then obtain a set of 

samples are plotted together with the contourplo

Figure 4.8: Staircase Sampler (Zoom

Figure 

 Stress Test Framework for Systems

 

, then we may see the staircase sampler in action 

fifteenth, twentieth sample points, which map respectively, to the probability sorted coordinates 

( )
29

~,~ yx , Figure 4.8. 

 

By way of the staircase sampler, we then obtain a set of 35=n  representative samples. These 

samples are plotted together with the contourplot of (4.1), Figure 4.9. 

Staircase Sampler (Zoom-in) 

Figure 4.7: Staircase Sampler 
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, then we may see the staircase sampler in action for the fifth, tenth, 

the probability sorted coordinates 

representative samples. These 
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The mean and covariance matrix esitmates of this representative sample compare favourable with 

(3.1): 

 

 







=








11.0

04.0

y

x
,      

 

For a 100-by-100 partition of the 

samples, we obtain Figure 4.10. 

 

 

 

The mean and covariance matrix esitmates of (

respectively, 

Figure 4.9: Contour Plot of (4.1) with 35 Representative Samples (20

Figure 4.10: Contour Plot of (4.1) with 879 Representative Samples (100
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The mean and covariance matrix esitmates of this representative sample compare favourable with 

and          








−

−
=

67.128.1

28.118.2
S . 

partition of the ( )yx, -domain in Figure 4.1 and a  set of =n

 

 

The mean and covariance matrix esitmates of (4.1) of the representative samples in Figure 

Contour Plot of (4.1) with 35 Representative Samples (20-by-20 grid)

Plot of (4.1) with 879 Representative Samples (100-by-100 grid)
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The mean and covariance matrix esitmates of this representative sample compare favourable with 

879=  representative 

.1) of the representative samples in Figure 4.10 are, 

20 grid) 

100 grid) 
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 








−
=








01.0

02.0

y

x
, 

 

For a 200-by-200 partition of the 

samples, we obtain Figure 4.11. 

 

 

 

The mean and covariance matrix esitmates of (4.1

respectively, 

 

 








−

−
=








03.0

01.0

y

x
, 

 

 

 

Figure 4.11: Contour Plot of (4.1) with 3529 Representative Samples (200
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      and           








−

−
=

93.138.1

38.199.1
S . 

200 partition of the ( )yx, -domain in Figure 4.1 and a set of 3519=n

 

 

The mean and covariance matrix esitmates of (4.1) of the representative samples in Figure 

      and           








−

−
=

87.132.1

32.196.1
S . 

 

Contour Plot of (4.1) with 3529 Representative Samples (200-by-200 grid)
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3519  representative 

) of the representative samples in Figure 4.11 are, 

200 grid) 
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5.0 REPRESENTATIVE SAMPLES FROM SYSTEMS OF INDEPENDENT COMPONENTS  

In this chapter we show how for systems of independent components/variables, the MC- or 

staircase-sampling from the cumulative distribution function of probability sorted univariate 

representation of the multivariate system state probability distribution may be short-circuited by a 

simple MC-sampling from the cumulative distribution functions of the independent compenents 

seperately. This observation will lead to the recommendation that for indenpedent 

compenents/variables simple MC-sampling is to be used, as is also done in the case study presented 

in Chapter 3. 

 

5.1 Sampling from Probability Sorted Total System Representations 

Say we wish to numerically evaluate the integral of the bivariate normal distribution ( )Σ,µMN

where 

 

 







=

0

0
µ ,  and  








=Σ

96.10

096.1
,   (5.1a) 

 

or, equivalently, 

 

 ( )
( ) ( )

( )







+−= 22

96.12

1
exp

96.12

1
, yxyxp

π
,     (5.1b) 

 

where 5,5 ≤≤− yx , Figure 5.1. 

 

 

  

  

 

 

Then we may discretize (5.1) into a collection of volume elements jk
V  (4.3), Figure 5.2. 

Figure 5.1: Graph of p(x, y) 
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The volume elements in Figure 

(4.7), Figure 5.3. 

 

 
 

 

 

The elements 
i

A  in Figure 5.3 are then rearranged 

 

  

Figure 5.2: Volume Elements of 

Figure 5.3: Area Elements of 

Figure 5.4: Ordered Area Elements of 

 Stress Test Framework for Systems

 

 

in Figure 5.2 may be transformed to corresponding area elements 

 

are then rearranged in descending order, Figure 5.

 

Volume Elements of p(x, y) 

Area Elements of p(x, y) 

Ordered Area Elements of p(x, y) 

Stress Test Framework for Systems 
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to corresponding area elements 
i

A  (4.5)-

5.4. 
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Figure 5.4 is a representation of some

 

  

 

Now, if we want to obtain a representative sample of 

may do this by MC-sampling the cumulative distribution fun

representation ( )wg , Figure 5.6

 

 

 

By way of staircase sampling, as we wish to guard against a repeated sampling of the same 

coordinate ( )
i

yx ~,~ , we then obtain a set of 

are plotted together with the contourplot of (

Figure 5.5: Function g(w); Ordered Univariate Representation of 

Figure 5.6: Cumulative Distribution Function (CDF) of 

 Stress Test Framework for Systems

 

s a representation of some monotonic descending function ( )wg , Figure 

 

, if we want to obtain a representative sample of n  realizations from (5.1) in Figure 

sampling the cumulative distribution function of the probability sorted univariate 

6, or by way of a stair case sampler (4.12).  

 

, as we wish to guard against a repeated sampling of the same 

we then obtain a set of 50=n  unique representative samples. These samples 

are plotted together with the contourplot of (5.1), Figure 5.7. 

); Ordered Univariate Representation of p(x, y) 

Cumulative Distribution Function (CDF) of w 
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Figure 5.5.  

.1) in Figure 5.1, then we 

probability sorted univariate 

, as we wish to guard against a repeated sampling of the same 

representative samples. These samples 
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The mean and covariance matrix esitmates of this representative sample compare favo

(5.1): 

 

 






−
=








03.0

10.0

y

x
, 

 

For a 100-by-100 partition of the 

samples, we obtain Figure 5.8. 

 

 

 

The mean and covariance matrix esitmates of (

respectively, 

 

Figure 5.7: Contour Plot of (5.1) with 50 Representative Samples (20

Figure 5.8: Contour Plot of (5.1) with 1232 Representative Samples (100
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The mean and covariance matrix esitmates of this representative sample compare favo

     and          








−

−
=

61.151.0

51.011.2
S . 

partition of the ( )yx, -domain in Figure 5.1 and a set of 1232=n

 

e mean and covariance matrix esitmates of (5.1) of the representative samples in Figure 

Contour Plot of (5.1) with 50 Representative Samples (20-by-20 grid)

Contour Plot of (5.1) with 1232 Representative Samples (100-by-
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The mean and covariance matrix esitmates of this representative sample compare favourable with 

1232 representative 

.1) of the representative samples in Figure 5.8 are, 

rid) 

100 grid) 
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 








−
=








07.0

02.0

y

x
,       and           









−

−
=

94.107.0

07.094.1
S . 

 

 

5.2 MC-Sampling from Independent System Components 

Taking a closer look at (5.1), we see that this bivariate probability distribution can be factored as a 

product of two normal probability distributions ( )2,σµN , each having a mean of 0=µ  and a 

variance of 96.12 =σ : 

 

( ) ( ) ( ),, ypxpyxp =         (5.2) 

 

where 

 

 ( )
( ) ( )









−=

96.12
exp

96.12

1 2
x

xp
π

      (5.3)  

 

and  

 

( )
( ) ( )









−=

96.12
exp

96.12

1 2
y

yp
π

.      (5.4) 

 

In order to come to a MC sample from (5.1), we may make use of the factorization in (5.2), by first 

taking a MC-sample from (5.3). The cdf of (5.3) is given as 

 

 ( )
( ) 

























+=








Φ=∫

∞− 96.12
erf1

2

1

96.1

xx
dvvp

x

,    (5.5) 

 

where the ( )xerf  function is part of the MATLAB library, Figure 5.9.  
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Let u  be random realisation from the unit uniform probability distribution 

 

 ( )1,0~ Uu .  

 

Then the x -value MC-realisation for the first factorization is given as as the solution of the equality, 

(5.5) and (5.6), 

 

 
( )
xMC


























+

96.12
erf1

2

1

 

It follows from (5.7) that for (5.3) the 

 

 ( ) (2erf96.12 1= −xMC

 

where the inverse error function 

are equal, apart from their variable labelling, we have that for a new realisation of (

the y -value MC-realisation  

 

  ( ) (erf96.12 1= −yMC

 

Let 1u  and 2u  be two separate realisation

be obtained as 

 

 ( ) ( )[ 96.12, =yx MCMC

 

By way of this simple MC-sampling, we then 

These samples are plotted together wit

Figure 5.9: Cumulative Distribution Function (CDF) of 

 Stress Test Framework for Systems

 

 

be random realisation from the unit uniform probability distribution ( 1,0U

      

realisation for the first factorization is given as as the solution of the equality, 

u=





.      

.3) the x -value MC-realisation can be given analytically as 

)12 −u .      

where the inverse error function ( )x1erf −
 is part of the MATLAB library. Likewise, as (

from their variable labelling, we have that for a new realisation of (

( )12 −u .     

be two separate realisations from (5.6), then a single MC-realisation from (

) ( ) ( ) ( )]12erf96.12,12erf 2

1

1

1 −− −− uu . 

sampling, we then may obtain a set of 50=n  representative samples. 

These samples are plotted together with the contourplot of (5.1), Figure 5.10. 

Cumulative Distribution Function (CDF) of x 

Stress Test Framework for Systems 

43 
 

)1 : 

 (5.6) 

realisation for the first factorization is given as as the solution of the equality, 

 (5.7) 

realisation can be given analytically as  

 (5.8) 

Likewise, as (5.2) and (5.3) 

from their variable labelling, we have that for a new realisation of (5.6) we obtain 

 (5.9) 

realisation from (5.1) may 

 (5.10) 

representative samples. 
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The mean and covariance matrix esitmates of this representative sample 

 

 








−
=








26.0

06.0

y

x
, 

 

Now, if we sample a set of 1232=n

 

 

 

The mean and covariance matrix esitmates of (

respectively, 

 

Figure 5.11: Contour Plot of (5.1) with 1232 Representative Samples

Figure 5.10: Contour Plot of (5.1) with 50 Representative Samples
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The mean and covariance matrix esitmates of this representative sample are given as

     and          








−

−
=

65.139.0

39.084.2
S . 

1232 representative MC-realisations, we obtain Figure 

 

The mean and covariance matrix esitmates of (5.1) of the representative samples in Figure 

Contour Plot of (5.1) with 1232 Representative Samples 

Contour Plot of (5.1) with 50 Representative Samples 
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are given as 

, we obtain Figure 5.11. 

.1) of the representative samples in Figure 5.11 are, 
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 








−

−
=








08.0

03.0

y

x
,       and           









−

−
=

90.108.0

08.012.2
S . 

 

 

5.3 Sampling Recommendation 

If a multivariate probability distribution can be factorised in a product of several probability 

distributions of lesser dimensionality, as is the case in (5.1), via (5.2)-(5.4) ,  then no univariate 

representation is needed for the system as a whole, as one can sample the factorisations separately. 

Moreover, if these factorisations allow for simple MC-sampling, as is the case for (5.3) and (5.4), 

then one may obtain very easily and large numbers representative of samples from factorised 

system of independent components. A non-trivial example of a system of independent components 

is the system of damage state probabilities for the bridges under the stress scenario in Figure 3.2, as 

we have that for a given river discharge scenario the damage state probabilities for each bridge in 

the system are independent of (i.e. unconditional on) the damage states of the other bridges, (3.11).       

 

If a multivariate probability distribution cannot be factorised in a product of several probability 

distributions of lesser dimensionality, as is the case in (4.1),  then some kind of univariate 

representation is needed for the system as a whole, as this will allow for either a simple MC-

sampling or a somewhat more involved staircase sampling from this univariate representation (see 

Figures 4.6-4.11). A non-trivial example of a system of ‘dependent’ components is the ‘system’ of 

fragility parameters values in  the joint probability distribution (3.5), as we have that this joint 

probability distribution cannot be factorised in probability distributions of the respective fragility 

parameters 1α , 2α , 3α , and β . In the next chapter we will present the Nested Sampling algorithm 

(Skilling, 2004), by which we may obtain univariate representations of any probability distribution 

which defined on a system of depedent components and/or joint probability distribution which 

cannot be factorized to a product of univariate probability distribution.      

 

So our recommendation is as follows. For a probability distribution which is defined on a system of 

independent components, use simple MC-sampling or a variation thereof for each of the 

independent components. For a probability distribution which is defined on a system of dependent 

components, first obtain a univariate representation of that system probability distribution, either 

by brute force evalution (see Chapter 4) or by way of Nested Sampling (see Chapter 6), and then use 

simple MC-sampling or a variation thereof on that univariate representation. 

 

In closing, the actual ordering of the area elements  are not pertinent to either sampling method; i.e. 

from a sampling point of view a monotonic increasing function is , say, ( )wh  is just as good as a 

descending one. What is key, however, is that the multivariate distribution (Figures 4.1 and 5.1) has 

been reduced to an univariate one (4.5 and 5.5), which then allows us to sample that univariate 

representation by constructing its corresponding cumulative distribution function (Figures 4.6 and 

5.6) or, alternatively, its staircase sampler (Figures 4.7 and 4.8).  

 



INFRARISK 

Deliverable D6.2   Stress Test Framework for Systems 

 

46 
© The INFRARISK Consortium   

It is only because Nested Sampling takes advantage of the fact that it has constructed ( )wg  to be 

monotonic descending (see Chapter 6) that the monotonic descending form, as displayed in Figures 

4.5 and 5.5, is prefererred over any other.   
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6.0 NESTED SAMPLING 

By reducing any k-variate probability distribution p  to a corresponding monotonic descending 

univariate function g , and by using order statistics, the univariate representation of any k-variate 

probability distribution p  may be evaluated using a Monte Carlo sampling scheme called Nested 

Sampling (Skilling, 2004; Skilling, 2006). Nested Sampling is used in the case study in Chapter 3 to 

come to an estimate of the joint probability distribution of the fragility parameters (3.5). 

 

6.1 Sampling Abcissa’s 

Say, we have some multivariate probability distribution ( )xp  for which we want to obtain an 

univariate representation, say,  

 

( )wg ,   for Ww ≤<0 .       (6.1) 

 

By construction, we may let g  be some montonic descending function of w . Let 
( )wx  be some some 

point in the parameter space of p , then 
( )( )wp x  will correspond, by construction, with some value 

( )wg . Now, if we have a value of the ordinate ( )wg  (i.e. the “y-value”) without knowing the 

corresponding abscissa value w  (i.e. the “x-value). Then the only thing we know about w  is that it 

take on a value somewhere in the range  

 

Ww ≤<0 ,          (6.2) 

 

where W  is the (hyper-)volume that spans the parameter space of ( )Nxxx ,,, 21 K=x ; that is,  

 

 
Nxxx RRRW L

21
= ,        (6.3) 

 

where 
kxR  is the range that spans the domain of parameter kx ; e.g. in Figure 4.5 

( ) ( ) 1001010 ==W . The (uninformed) state of knowledge (6.2) translates directly to the state of 

knowledge that w  is uniformly distributed as   

 

( )
W

wp
1

= ,   for  Ww ≤<0 ,     (6.4) 

 

with a mean of 

 

 ( )
2

W
wE = ,         (6.5)    

 

and a standard deviation of    
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( )
32

W
wstd = ,         (6.6) 

 

Now, suppose that we sample n  values of ( )wg , that is, we have sampled ( ) ( )nwgwg ,,1 K , and 

though we still do not know the values of nww ,,1 K , the one thing we now do know is that the 

smallest realisation of ( )wg  must correspond with the greatest value of w . This is because function 

( )wg  is, by construction, a monotonic descending function. It follows that we may use an order 

distribution for the unknown value maxw : 

 

 ( )
WW

w
nwp

n
1

1

max
max

−









= ,  for  Ww ≤< max0 ,   (6.7) 

 

with mean of 

 

 ( ) W
n

n
wE

1
max

+
= ,        (6.8) 

 

and a standard deviation 

  

( )
112

max
+

→
++

=
n

W

n

W

n

n
wstd ,  as  1>>n ,   (6.9) 

 

Note that the standard deviation, that is, our uncertainty regarding the unknown value of  maxw , 

falls of with a factor of approximately n  . It will be seen that (6.8) and (6.9) form the backbone of  

the Nested Sampling algorithm. 

 

6.2 The Basic Nested Sampling Algoritm 

In this discussion of the Nested Sampling algorithm we will not protect against under- and overflow. 

We will just focus here on the basic philosophy which underlies Nested Sampling.  

 

Step 1. 

Find n  random values ix  in the x -plane, where all the states ix  are assumed to be equally 

probable and greater than zero 

 

 ( ) 0>= ii Pp x ,  for ni ,,2,1 K= .    (6.10) 
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It holds trivially that the n  values of ( )ip x  also correspond with n  values of its univariate 

representation ( )wg , as we always may perform the steps as shown in Figures 4.1- 4.5 and Figures 

5.1- 5.5.   

 

In the absence of an explicit sorting of the volume/area elements, we cannot map the x -

coordinates to the corresponding w -coordinate explicitly. But the thing we can do is use (6.8) to 

statistically approximate this corresponding w -coordinate for the ix that gives the smallest 

observed iP  (6.10), and thus get our first coordinate ( )11 , gw  of the unknown function ( )wg , 

where 

 

 W
n

n
w

1
1

+
= ,      ( ) ( )[ ]i

i
i

i
pPg xminmin1 == ,       (6.11) 

 

where the error of our estimated 1w  will fall of with a factor n , as can be seen in (6.9). We now 

approximate the integral right of 1w  (6.11) as 

 

( ) ( ) 1111
1

1

g
n

W
gwWdwwgA

W

w
+

=−≈= ∫ ,     (6.12) 

 

and we set  

 

11 AZ = .         (6.13) 

 

Step 2. 

We again find n  random values jx  in the x -plane, but now we constrain these random values to 

be equal or greater than the value of the minimum of the last iterate, that is, we sample jx  under 

the constraint (6.11) 

 

( ) 1gPp jj ≥=x ,   for nj ,,2,1 K= ,    (6.14) 

     

where all the states jx  which adhere to this constraint are assumed to be equally probable. Let  

 

*

1 ww = ,          (6.15) 

 

then we may rewrite the constraint (6.14) as the equivalently constraint 

 

( ) ( )*
wgwg j ≥ ,   for nj ,,2,1 K= ,    (6.16) 
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as it holds trivially that the n  values of ( )xp  must correspond with n  values of ( )wg . Now, since 

( )wg  is by construction a monotonic descending function, and since 1w  is the coordinate that is 

associated with the lowerbound 1g  (6.11), it follows that the equivalent sampling constraints (6.14) 

and (6.16) imply for the unknown jw  the constraint  

 

*
0 ww j ≤< .          (6.17) 

 

So, again by way of (6.8), but now replacing W  with 1w , the second coordinate ( )22 , gw  of the 

unknown function ( )wg  may be estimated as 

 

 12
1

w
n

n
w

+
= ,      ( ) ( )[ ]j

j
j

j
pPg xminmin2 == .       (6.18) 

 

We now approximate the area integral from 2w   to 1w  as 

 

 ( ) 2
1

2
1

11

2

g
n

w
dwwgA

w

w
+

−
≈= ∫ ,       (6.19) 

  

and we approximate the area integral from 2w  tot W  as  

 

( ) 212

2

AAdwwgZ

W

w

+≈= ∫ .       (6.20) 

 

Step t. 

For the t
th

 iterate we find n  random values kx  in the x -plane under the constraint 

 

( ) 1−≥= tkk gPp x ,   for nk ,,2,1 K= ,    (6.21) 

 

where all the states jx  which adhere to this constraint are assumed to be equally probable.  The 

ordinate of the t
th

 coordinate ( )tt gw ,  of the unknown function ( )wg  may be estimated as 

 

 ( ) ( )[ ]k
k

k
k

t pPg xminmin == ,         (6.22) 

 

and its corresponding abscissa, by way of the order statistic (6.8), is estimated as 

 

 1
1

−
+

= tt w
n

n
w .         (6.23) 
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We now approximate the area integral from tw  to 1−tw  as 

 

 ( ) t
t

w

w

t g
n

w
dwwgA

t

t
1

11

1

+

−
≈= −∫

−

,       (6.24) 

 

And we approximate the area integral from tw  tot W  as 

 

( ) ∑∫
=

≈=
t

i

i

W

w

t AdwwgZ

t
1

.       (6.25) 

 

Termination Step. 

We have that 0lim =∞→ tt w , because of the identity: 

 

 W
n

n
w

t

t 








+
=

1
.        (6.26) 

 

So, if we want to find the iteration T  at which we need to terminate the Nested Sampling run we 

may solve 

 

 
T

T

wW
n

n
=









+1
        (6.27) 

 

for T , which gives 

 

 










+










=

1
log

log

n

n

W

w

T

T

.        (6.27) 

  

where Tw  is the point on the w -axis where we stop to evaluate the function g , W  is the (hyper-) 

volume of the parameter space (6.3), and n   is the number of samples which are sampled uniformly 

with the likelihood constraint at each iteration step (i.e. n  is number of ‘Nested Sampling objects’). 

For example, we may let the Nested Sampling algorithm run T  iterations until 1.0=Tw  or, if we 

wish more precision, until 01.0=Tw , as we have that Ww ≤<0 . 

 

6.3 Issues of Computational Efficiency 

In the Nested Sampling algorithm we need at each iteration t  to obtain n  equiprobable samples kx  

under the constraint (6.21) 
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 ( ) 1−≥ tk gp x ,    for nk ,,1 K= ,    

 

where  00 =g .  One computationally wasteful way to obtain these n  equiprobable samples is to 

just draw random samples until we have obtained the necessary n  samples that adhere to (6.21). 

Another, more efficient way is to realize that at iteration step ( )1−t  we already had ( )1−n  objects 

that satisified both the constraint (7.22) as well as the desideratum of equiprobability; see (6.10), 

(6.14), and (6.21). If we keep these ( )1−n  objects, then we only need to sample one aditional object 

in order to obtain our needed sample of n  objects. 

 

In the words of Skilling (2004): “After each iteration t  we discard one object from our sample of n  

objects. This discarded object becomes the lowerbound tg . The ( )1−n  surviving objects are taken 

to the next iteration and an additional object nx  is sampled under the constraint ( ) tn gp ≥x . This 

implementation reduces the computational costs with an order of magnitude of n .” 

 

The generating of an additional object nx  under:  

 

(a)  the constraint ( ) tn gp ≥x ,  

 

(b)  the desideratum of equiprobability, 

  

at time step ( )1+t  is where the computational overhead of Nested Sampling lies. The constraint (a) 

is simple enough to enforce. All proposals nx  with probabilities ( ) tn gp <x   are simply rejected. 

However, the desideratum of equiprobability is more difficult to fullfill. Equiprobability means that 

all the states ix , for which we have ( ) ti gp ≥x , must have the same probability of being sampled. 

For the implementation of the Nested Sampling algorithm in the InfraRisk, we use a simple MCMC 

sampler (Sivia and Skilling, 2006; Section 9.6.3). 
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7.0 THE PROBABILITY SORT ALGORITHM  

We now discuss the concept/background behind the Probability Sort algorithm for the case where 

we have only two damage states 2=M ; that is, the states damaged and not-damaged. The 

MATLAB code, together with a pseudo-code for the general case of arbitrary M  is given in Appendix 

A.  

 

For the case where 2=M , the number of possible damage states will be 
N2 . The Probability Sort 

algorithm goes from the most likely damage state 
( )1

ix , to the next likely damage state 
( )2

ix , to the 

next likely damage state 
( )3

ix , and so on, such that  

 

 
( )( ) ( )( )t

i

s

i pp xx ≥ ,  for  ts <  .     (7.1) 

 

The selection of the 
( )s

ix  is done so efficiently that there are no rejections in the damage state 

proposals. Moreover, the selection itself only takes ( )NO  time.  

 

For the specific case 2=M , the state vectors 
ix , for  N

i 2,,2,1 K= , may be constructed as vector 

consisting of 0 and 1’s. The probabilities of an element 
kx  in 

ix  being either 0 or 1 is dependent on 

the PGA value which is associated with that element 

 

 
( )

( )kj PGAxp
k

| ,  for ,2,1=kj      (7.2) 

 

and Nk ,,2,1 K= . So, the probability which is associated with a given 
ix  may be computed as  

 

  ( )
( )

( )∏
=

=
N

k

kji PGAxpp
k

1

|x .       (7.3) 

 

Now, let  

 

( )
( )

( )
( )[ ]

kjkjk PGAxpPGAxpp
kk

|0,|1maxmax ===     (7.4) 

  

be the maximum possible damage state probability for component k , and let 

 

 { }1,0max ∈kx          (7.5) 

 

be the damage state which corresponds with this maximum probability. Then the damage state 

vector with maximum probability,  

   

 ∏
=

=
N

k

kpP
1

maxmax ,        (7.6) 
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is given as 

 

 { }maxmax

2

max

1

max ,,, Nxxx K=x .       (7.7) 

 

Now, it stands to reason that this ‘Most Likelihood’ damage state vector 
maxx  should be the first and 

foremost of all the possible damage state scenarios of which the consequences should be evaluated; 

that is,  

 

 
( ) max1

xx =i ,         (7.8) 

 

where, by construction,     

 

( )( ) ( ) maxmax1
Ppp i == xx .       (7.9) 

 

If we follow this line of reasoning, then the second best damage state proposal would be that 

damage state vector which has the second highest probability.  

 

Now, the minimum possible probability for a damage state for component k  is given as (7.4): 

 

 
( )

( )
( )

( )[ ]
kjkjkk PGAxpPGAxppp

kk
|0,|1min1 maxmin ===−= ,  (7.10) 

 

with corresponding damage state (7.5): 

 

 { }1,01 maxmin ∈−= kk xx .        (7.11) 

 

Let  

 

 { }minmin

2

min

1

min ,,, Nppp K=p        (7.12) 

 

be the vector with the minimum probabilities for the N  components. Then the damage state 
min

qx  

which corresponds with the maximum of the minimum vector (7.12) 

 

 ( )minmin
max p=qp         (7.13) 

 

is the only possible candidate for as state switch (7.11): 

 

 
( ) { }maxmax

1

minmax

1

max

2

max

1

2
,,,,,,, Nqqqi xxxxxx KK +−=x      (7.14) 

 

So, the probability which corresponds with this second best proposal is (7.4), (7.6) and (7.13): 
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( )( ) max

max

min

2
P

p

p
p

q

q

i =x .        (7.15)   

 

as the qth state probability has switched from its maximum probability state to its minimum.  

 

Now, the third most probable damage state vector necessarily will also be of the form where only 

one damage state, say 
ux , is being switched, as we reset qx  to its original damage state value in 

(7.7): 

 

 
( ) { }maxmax

1

maxmax

1

max

1

minmax

1

max

2

max

1

3
,,,,,,,,,,, Nqqquuui xxxxxxxxx KKK +−+−=x .  (7.16) 

 

But as we come to the fourth most probable damage state vector, then we find that we bifurcate 

into the possibility of  either both 
ux  and qx  being switched,  

 

 
( ) { }maxmax

1

minmax

1

max

1

minmax

1

max

2

max

1

4
,,,,,,,,,,, Nuuuqqq

a

i xxxxxxxxx KKK +−+−=x ,  (7.17) 

 

or 
ux  being reset to its original damage state value in (7.7), as we switch some other element, say 

wx : 

 

 
( ) { }maxmax

1

minmax

1

maxmaxmax

2

max

1

4
,,,,,,,,,,, Nwwwuq

b

i xxxxxxxx KKKK +−=x .  (7.18) 

 

In Appendix A the Probability Sort switching algorithm is given which produces scenario proposals 

ordered by their probabilities.  
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8.0 THE MODELLING OF CASCADING EFFECTS 

The INFRARISK project is concerned with the behaviour of critical infrastructures, such as road and 

rail networks, when subjected to natural hazards such as landslides, floods, earthquakes or a 

combination of all three. These natural hazards, as well as the consequent behaviour of the 

infrastructural elements, vary both spatially and temporally. 

 

For example, the closer an infrastructural objects is to the epicentre of some seismic event, the 

greater will be its tendency to be in a damaged state. Moreover, if the damage state of one 

infrastructural objects is dependent on the damage state of another, then as the latter 

infrastructural object is damaged and time progresses the greater will be the probability of the 

former infrastructural object to be in a damaged state. 

 

One example of such a system of temporally related systems of interdependent damage states is, 

say, an infrastructural system where the levee damage states are dependent upon the damage state 

of the electrical infrastructure (flooding influences functionality of power generators), and vise versa 

(levees are powered by electricity). Another example is, say, a system consisting of pressurized fuel 

storage tanks, where an exploded damage state of one or more storage tanks will be of influence, by 

way of initial overpressure and subsequent heat radiation, on the damage states of the surrounding 

storage tanks. 

 

In this chapter we will discuss the modelling of temporal dependencies between systems of 

interdependent damage states, by way of the latter fuel storage field example, as this is the 

archetypical example of a cascading effect scenario. 

 

8.1 The ‘Physics’ Behind the Probability Map 

For our fuel storage field it is assumed that the explosion of a given pressurized fuel storage tank 

generates a heat radiation of, say, 200  kW/m
2
 which falls of, say, as the inverse of the distance. 

Moreover, it is assumed that the total heat radiation for multiple explosions is a superposition of the 

heat radiation of the separate explosions. 

 

For example, if we have K  exploded fuel tanks, having coordinates ( )kk YX , , for Kk ,,1 K= . Then 

the total heat radiation R  which is experienced by an intact fuel tank having coordinates ( )yx,  is 

given as 

 

 ( )
( ) ( )

∑
= −+−

=
K

k
kk YyXx

yxR
1

22

200
, .      (8.1) 

 

The corresponding (probit) probability of being damaged is given as 

 

 ( ) ( )
,

2

,7534.4
1

2

1
, 















 +−
+=

yxR
erfyxP      (8.2) 
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which for a heat radiation of ( ) 0, 00 =yxR  will give a corresponding base-line damage probability of 

( ) 6

00 10, −=yxP .  

 

8.2 Some Example Probability Maps 

Say we have 25=N  fuel storage objects arranged in a 5-by-5 grid with, say, a distance of 50  

meters between horizontally and vertically adjacent objects and a distance of  

 

22 505071.70 +=   

 

meters between diagonally adjacent objects. If we let the fuel storage objects with coordinates 

( )150,150  and ( )100,150  explode, then we obtain the state matrix in Table 8.1. 

 

0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 0 1 0 0 

0 0 0 0 0 

Table 8.1: State Matrix 1 

 

The corresponding probability map may be constructed by way of (8.1) and (8.2), Table 8.2. 

 

0.0129 0.0446 0.0778 0.0446 0.0129 

0.0605 0.4459 0.8937 0.4459 0.0605 

0.1674 0.9810 1 0.9810 0.1674 

0.1674 0.9810 1 0.9810 0.1674 

0.0605 0.4459 0.8937 0.4459 0.0605 

Table 8.2: Explosion Probability Map for State Matrix 1 

 

Alternatively, if we let the fuel storage objects with coordinates ( )150,150 , ( )200,150 , ( )150,100  

explode, then we obtain the state matrix in Table 8.3. 

 

0 0 0 0 0 

0 0 1 0 0 

0 1 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

Table 8.3: State Matrix 2 

 

The corresponding probability map may be constructed by way of (10.1) and (10.2), Table 8.4. 
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0.5943 0.9688 0.9988 0.8994 0.3296 

0.9688 1.0000 1 0.9999 0.6180 

0.9988 1 1 1.0000 0.6438 

0.8994 0.9999 1.000 0.9508 0.3877 

0.3296 0.6180 0.6438 0.3877 0.1313 

Table 8.4: Explosion Probability Map for State Matrix 2 

 

It may be glanced from Tables 8.2  and 8.4 that the superposition of heat radiation in (8.1) in all 

likelihood will lead to a cascade of explosions. 

 

8.3 Probability Sort Analysis of Cascading Effects 

Say we have 25=N  fuel storage objects arranged in a 5-by-5 grid with, say, a distance of 50  

meters between horizontally and vertically adjacent objects. The primary initiating event, at time 

step 0=t , is the event where the centre fuel storage object with coordinates ( )150,150  has 

exploded, Table 8.5. 

 

0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

Table 8.5: State Matrix of Primary Event at t = 1 

 

The corresponding probability map may be constructed by way of (10.1) and (10.2), Table 8.6. 

 

0.0004 0.0015 0.0029 0.0015 0.0004 

0.0015 0.0271 0.2256 0.0271 0.0015 

0.0029 0.2256 1 0.2256 0.0029 

0.0015 0.0271 0.2256 0.0271 0.0015 

0.0004 0.0015 0.0029 0.0015 0.0004 

Table 8.6: Explosion Probability Map for Primary Event at t = 1 

 

The number of damage states is 2=M , the number of objects is 25=N , and the number of 

elements in a damaged (i.e. exploded) state is 1=K . So the total state space which corresponds 

with the explosion probability map in Table 8.6 is   

 

 
724125 1068.122 ×=== −−KN

M .      (8.3) 

 

It follows that following the primary event in Table 8.5, we will have 
242  possible event scenarios at 

each time step. Among these higher order event scenarios are the scenarios in Tables 8.1, 8.3, and 

8.5, with corresponding probability maps Tables 8.2, 8.3, and 8.6.  
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As we have an irreversible process (i.e exploded fuel storage tanks cannot ‘unexplode’), the total 

number of scenario routes at a given time step may be modelled by way of a 
242 -by-

242  Markovian 

transition matrix, having 

 

 
142424 1081.222 ×=×         (8.4) 

 

elements. Now, a state matrix with K  explosions will map to possible 
K−252  end points. So, our 

hypothetical 
242 -by-

242  Markovian transition matrix has 

 

 
( )

11
24

1

2424 1082.22
!24!

!24
2 ×=

−
+∑

=

−

i

i

ii
      (8.5) 

 

non-zero probability elements. In other words, at a given time step 0>t  there are 
111082.2 ×  

admissible routes in which we go from one of the 
71068.1 ×  possible starting scenarios to some 

admissible subset of the total scenario space, with subsets ranging from 
71068.1 ×  scenarios to 1 

scenario. 

 

This overwhelming number of admissible routes (8.5) notwithstanding, it is found that the 

Probability Sort algorithm will give very decent probability coverages over the time steps for given 

probability cut-offs for the primary event in Table 8.5, with a probability map ‘physics’ of (8.1) and 

(8.2), Table 8.6. In Table 8.7 these probability coverages are given together with the number of 

active probability components at each time step.  

 

Time Step Cut-off = 10
-6 

Cut-off = 10
-7

 

coverage # components coverage # components 

1 0.9995 1094 0.9999 2459 

2 0.9177 33100 0.9754 111430 

3 0.8745 16104 0.9608 61476 

4 0.8529 7069 0.9527 32864 

5 0.8426 2417 0.9484 15976 

6 0.8382 651 0.9463 7045 

7 0.8365 126 0.9452 2373 

Table 8.7: Probability Coverage and Number of Active Probability Components 

 

The probability cut-offs in Table 8.7 are enforced such that the probability for a given scenario, (8.3), 

at a given time step is not smaller than that cut-off.  

 

It may be glanced from the time progression of the number of active probability components in 

Table 8.7 that the primary event in Table 8.5, together with (8.1) and (8.2), will lead us from an initial 

low-entropic state, to an intermediate higher-entropic state, back to a final low entropic state. This 

may be explained as follows.  
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Initially, we only expect the fuel storage objects which are horizontally and vertically adjacent to the 

exploded object to reach an exploded state, Table 8.6. Because of the superposition of heat 

radiation we expect (see Tables 8.2 and 8.4)  the fuel storage tank field to cascade as time 

progresses to a total conflagration state. But we are uncertain as to the route that will take us from 

the initial low entropic state to this final low entropic state. This uncertainty translates to an 

intermediate higher entropic state where the probabilities are more spread out over the total state 

space and, consequently, more active probability components are in play.  

 

8.3.1 Time Evolving Marginal Damage State Probabilities 

If, for the cut-off of 10
-7

, we weigh the damage state ‘matrices’ 
( )sx by the normalized probabilities  

 

( )
( )

( )∑ =

=
S

s

S

s
s

P

P
P

1

~
 ,        (8.6) 

 

where 
( )sP  is the probability of 

( )sx  and S  is the total number of active probability components, or, 

equivalently, probability sort scenario proposals, then we obtain the following expected marginal 

probabilities, say, ( )θE , where 

 

 ( ) ( ) ( )∑
=

=
S

s

ssPE
1

~
xθ ,        (8.7) 

 

of being in an exploded state, Tables 8.8-8.14. 

 

.0004 0.0015 0.0029 0.0015 0.0004 

0.0015 0.0271 0.2256 0.0271 0.0015 

0.0029 0.2256 1.000 0.2256 0.0029 

0.0015 0.0271 0.2256 0.0271 0.0015 

0.0004 0.0015 0.0029 0.0015 0.0004 

Table 8.8: Estimated Explosion Probability Map at t = 1  

 

 

0.1426 0.2902 0.3703 0.2902 0.1426 

0.2902 0.5637 0.7353 0.5637 0.2902 

0.3703 0.7353 1.000 0.7353 0.3703 

0.2902 0.5637 0.7353 0.5637 0.2902 

0.1426 0.2902 0.3703 0.2902 0.1426 

Table 8.9: Estimated Explosion Probability Map at t = 2 

 

  



INFRARISK 

Deliverable D6.2   Stress Test Framework for Systems 

 

61 
© The INFRARISK Consortium   

 

0.7318 0.7776 0.8024 0.7776 0.7318 

0.7776 0.8624 0.9161 0.8624 0.7776 

0.8024 0.9161 1.000 0.9161 0.8024 

0.7776 0.8624 0.9161 0.8624 0.7776 

0.7318 0.7776 0.8024 0.7776 0.7318 

Table 8.10: Estimated Explosion Probability Map at t = 3 

 

 

0.9178 0.9315 0.9390 0.9315 0.9178 

0.9315 0.9571 0.9736 0.9571 0.9315 

0.9390 0.9736 1.000 0.9736 0.9390 

0.9315 0.9571 0.9736 0.9571 0.9315 

0.9178 0.9315 0.9390 0.9315 0.9178 

Table 8.11: Estimated Explosion Probability Map at t = 4 

 

 

0.9754 0.9794 0.9815 0.9794 0.9754 

0.9794 0.9868 0.9918 0.9868 0.9794 

0.9815 0.9918 1.000 0.9918 0.9815 

0.9794 0.9868 0.9918 0.9868 0.9794 

0.9754 0.9794 0.9815 0.9794 0.9754 

Table 8.12: Estimated Explosion Probability Map at t = 5 

 

 

0.9929 0.9939 0.9945 0.9939 0.9929 

0.9939 0.9960 0.9974 0.9960 0.9939 

0.9945 0.9974 1.000 0.9974 0.9945 

0.9939 0.9960 0.9974 0.9960 0.9939 

0.9929 0.9939 0.9945 0.9939 0.9929 

Table 8.13: Estimated Explosion Probability Map at t = 6 

 

 

0.9981 0.9983 0.9984 0.9983 0.9981 

0.9983 0.9988 0.9992 0.9988 0.9983 

0.9984 0.9992 1.000 0.9992 0.9984 

0.9983 0.9988 0.9992 0.9988 0.9983 

0.9981 0.9983 0.9984 0.9983 0.9981 

Table 8.14: Estimated Explosion Probability Map at t = 7 
  

It may be glanced from Tables 8.8-8.14, that the marginal probabilities of being in an exploded state 

will increase in magnitude as time progresses. Also note that the estimated marginal probabilities of 

being in an exploded stated at time step 1, Table 8.8, are the same as the analytical probability map 
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in Table 8.6, which was obtained by way of the primary event in Table 8.5 and the probability map 

model (8.1) and (8.2).  

 

8.3.2 Time evolving ML-damage states 

We now will focus on the change in probabilities of four representative fixed damage state 

scenarios, Tables 8.15-8.18.  

 

0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

Table 8.15: State Matrix 1 

 

In Table 22 we have the total containment scenario, where no additional fuel storage objects 

explode. 

 

0 0 0 0 0 

0 0 0 0 0 

0 0 1 0 0 

0 0 1 0 0 

0 0 0 0 0 

Table 8.16: State Matrix 2 

 

 

0 0 0 0 0 

0 0 1 0 0 

0 1 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

Table 8.17: State Matrix 3 

 

In Tables 8.16 and 8.17 we have limited spill-off scenarios, where, respectively, one and two 

additional fuel storage objects have exploded. 

 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

Table 8.18: State Matrix 4 
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In Table 8.18 we have the total destruction scenario, where all the storage objects have exploded. 

We now take a look at the progression of the probabilities of these damnage states as time 

progresses, where we put the Most Likelihood (ML) probabilities in boldface, Table 8.19.  

 

Time Step P(State matrix 1) P(State matrix 2) P(State matrix 3) P(State matrix 4) 

1 0.3140 0.0915 0.0267 9.17 5610−×  

2 0.0986 0.0287 0.0084 0.0282 

3 0.0310 0.0090 0.0026 0.6703 

4 0.0097 0.0028 0.0008 0.8650 

5 0.0031 0.0009 0.0003 0.9226 

6 0.0010 0.0003 8.14 510−×  0.9390 

7 0.0003 8.78 510−×  2.56 510−×  0.9433 

Table 8.19: Probabilities of State Matriices in Tables 8.15-8.18 

 

At both time steps 1 and 2 the total containment scenario is the ML scenario. From time step 3 

onwards, the total destruction scenario becomes the ML scenario. At time step 1 there is still a 

considerable likelihood that there is either full containment or limited spill-off:  

 

 ( ) ( ) 8402.00267.0
2

4
0915.0

1

4
3140.0 =








+








+ ,    (8.8) 

 

where the combinatorial factors result from the switching symmetries present in Table 8.6. At time 

step 2 this likelihood has dropped off dramatically: 

 

 ( ) ( ) 2638.00084.0
2

4
0287.0

1

4
0986.0 =








+








+ .    (8.9) 

 

At time step 3 the likelihood of either full containment or limited spill-off has dwindled to a mere  

 

 ( ) ( ) 0826.00026.0
2

4
0090.0

1

4
0310.0 =








+








+ ,    (8.10) 

 

while the probability of the total destruction scenario is a hefty 0.6703,  and as time progresses this 

probability approaches certainty. Especially so, if we take into account that total probability 

coverage has not been achieved (i.e., compare the right hand probability coverages in Table 8.7 with 

the State Matrix 4 probabilities in Table 8.19).  
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9.0 CONCLUSIONS 

This deliverable contains a general stress test framework. In this framework stress tests are just a 

special instance of a risk assessment, where instead of marginalizing over the entire possible stress 

scenarios one specific stress scenario is chosen instead for which to gauge its potential effects.  

 

If we wish to conduct a stress test on large probabilistic systems consisting of many stochastic 

components then, as a matter of practical implementation, the evaluation of the densitity of states 

will necessitate the use of sampling techniques. If the stochastic components in the probabilistic 

system under consideration are independent then MC-sampling may be used, if the stochastic 

components are dependent then Nested Sampling is recommended, and if temporal and spatial 

correlations (i.e. cascading effects) are to be evaluated on a system of stochastic components, then 

the Probability Sort algorithm is recommended.  
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APPENDIX A: THE PROBABILITY SORT ALGORITHM 

 

A.1 Algorithmic Outline 

Step 1: Permutate the stateMatrix and the probMatrix into their desired base-line states. 

Step 2: Define the function undoPermutate(.) which undoes these base-line permutations in the 

final probability sorted damage state vectors. 

Step 3: Set up the output list probabilitySort and the intermediate Proposals list. 

Step 4: enter a While-loop, until the desired number of probability sorted damage state vectors, 

desiredNumber, has been obtained, or until all possible damage state vectors have been passed 

through, whichever comes first.   

Step 5: take that damage state vector entry from the Proposals list which has the  

maximum probability, make the components of that entry available within the While-loop, clean up 

the Proposals list, update the probabilitySort list by way of these components, and update the total 

probability coverage variable sumProb. 

Step 6: replenish the Proposals list which with a maximum of three new proposals. These new 

proposals guarantee that all the remaining leaves of the event tree of the damage state space may 

still be explored, and that the next best probability is always in the updated Proposals list.  

Step 7: Print the sumProb probability coverage value and terminate the algorithm. The 

probabilitySort list consisting of the probability sorted damage state vectors and their corresponding 

probabilities is now available for the user. 

 

A.2 Pseudo-Code 

INPUT  

stateMatrix: State matrix/list of the N  components under consideration. 

probMatrix: State probability matrix/list of the N  components under consideration. 

desiredNumber: desired number of probability sorted damage state vectors.  

 

OUTPUT  

probabilitySort: list consisting of damage state proposals 
( )sx  with corresponding probabilities 

( )sP  , 

ordered in descending order by way of the probabilities 
( )sP ;  

sumProb: the total probability density covered by the probabilities of the damage state vectors in 

the list probabilitySort 

 

ALGORITHM 

 

Step 1.a  

If we have M  possible damage states for each of the N  possible infrastructural elements, then we 

may define the N-by-M  matrix  
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stateMatrix = 



















M

M

M

L

MOMM

L

L

21

21

21

       (1) 

 

the corresponding probability matrix which has its rows the damage state pdf of the corresponding 

infrastructural element may be given as the  N-by-M  matrix ,  

 

probMatrix = 



















NMNN

M

M

θθθ

θθθ

θθθ

L

MOMM

L

L

21

22221

11211

      (2) 

 

 

We then do a Sort over the rows of probMatrix so that per rows the probabilities are in descending 

order, from large to small:  

 

permutatedProbMatrix = 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

















NMNNNMNNNMNN

MMM

MMM

θθθθθθθθθ

θθθθθθθθθ

θθθθθθθθθ
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,,,min,,,nextMax,,,max

,,,min,,,nextMax,,,max

212121

222212222122221

112111121111211

KLKK

MOMM

KLKK

KLKK

 . 

           (3) 

 

where we track the permutations of each of the rows that take us from probMatrix to 

permutatedProbMatrix. These permutations are then applied to the corresponding rows in 

stateMatrix. A possible realization of the resulting permutatedStateMatrix may be, say  

 

permutatedStateMatrix = 



















−

21

12

12

L

MOMM

L

L

M

MM

M

.     (4) 

 

The permutatedStateMatrix allows us to keep track of which probabilities in the rows of 

permutatedProbMatrix point to which damage state.  

 

The first column of the permutatedStateMatrix then gives the damage state vector that has the 

highest probability of occurring, with a probability of 

 

P = 1; 
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For[ i =1, i ≤  N, 

P = P ×  permutatedProbMatrix(i, 1);       

             i++] 

 

N.B.: Instead of the specific case of a  N-by-M  matrix, we alternatively, and more generally, may 

have a list of length N , say, probList, with in each row of that list a discrete probability distribution 

over iM  damage states, where Ni ≤≤1 , which are given in the corresponding rows of the list, say, 

stateList. For this more general case we may compute a permutatedProbList and a 

permutatedStateList. The first column of the permutatedStateList then also will give the damage 

state vector that has the highest probability of occurring, with a probability of P. 

 

 

Step 1.b  

then do a row Sort over the entire permutatedProbMatrix such that in its second column the 

probabilities are arranged in descending order from large to small. This results in, say, for short, the 

doublePermutatedProbMatrix, where  

 

 second column of doublePermutatedProbMatrix =  

 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]

( ) ( ) ( )[ ] 

























NMNNMM

NMNNMM

NMNNMM

θθθθθθθθθ

θθθθθθθθθ

θθθθθθθθθ

,,,nextMax,,,,,nextMax,,,,nextMaxmin

,,,nextMax,,,,,nextMax,,,,nextMaxnextMax

,,,nextMax,,,,,nextMax,,,,nextMaxmax

212222111211

212222111211

212222111211

KKKK

M

KKKK

KKKK

            

           (5) 

 

Step 2  

Keeping track of the permutations that take us from the permutatedProbMatrix to the 

doublePermutatedProbMatrix, we may construct the corresponding doublePermutatedStateMatrix. 

For example, if we have the index vector  

 

[ ]10987654321        (6)  

 

of the original row ordering in permutatedProbMatrix, then the corresponding row ordering in both 

the doublePermutatedProbMatrix and doublePermutatedStateMatrix may be, say,  

 

 [ ]97310682514       (7) 

 

Now let undoPermutate be that function that rearranges the index vector (7) back the original index 

vector, or, equivalently, (3) and (4) 
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 undoPermutate[ doublePermutatedProbMatrix ] = permutatedProbMatrix  

   

           (8) 

 undoPermutate[ doublePermutatedStateMatrix ] = permutatedStateMatrix. 

 

 

Step 3.a 

Set the vector stateVector as the first column of the doublePermutatedStateMatrix:  

 

 stateVector = doublePermutatedStateMatrix(1, :);    (9) 

 

or, equivalently, depending on the programming language used, 

 

 stateVector = doublePermutatedStateMatrix(1, All); 

 

Likewise, set  

 

P = 1; 

For[ i =1, i ≤  N, 

P = P ×  doublePermutatedProbMatrix(i,1);    (10) 

             i++] 

 

Store both the probability 

 

  
( )1P  = P          (11) 

 

and the unsorted stateVector, see (8), 

  

( )1x  =  undoPermutate[ stateVector ]      (12) 

 

in a list 
( ) ( ){ }11 , xP  and insert that list entry into the list probabilitySort 

 

 probabilitySort = 
( ) ( ){ }{ }11 , xP  .      (13) 

 

 

Step 3.b 

Now the stateVector in (9) gives the damage state vector that has the highest probability of 

occurring, while being arranged such that that the switching of the first damage state to the damage 

state of the second entry in the first row of the doublePermutatedStateMatrix will have the next 

highest probability; that is, 

 

 stateVector(1) = doublePermutatedStateMatrix(1, 2);    (14) 
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has a corresponding next best probability of (10) 

 

 P = [ P/ doublePermutatedProbMatrix(1,1) ] ×  doublePermutatedProbMatrix(1,2);  

(15)  

 

In order to reflect the switch operation (14) we initialize the switchVector as the base-line vector 

 

 switchVector = zeros(N, 1) ;       (16a) 

 

which gives 

 

switchVector = [ ]000 K ;      (16b) 

 

after which we switch the first entry of this vector from 0 to 1, so as to reflect the switch operation 

in (14): 

 

 switchVector(1) = 1 ;        (17a) 

 

which gives 

 

 switchVector = [ ]001 K ; .      (17b) 

 

 

Also, we set the active switch location as 

 

activeSwitch = 1.        (18) 

 

Store the adjusted probability (15), the adjusted state vector (14), the switch vector (17b), and the 

active switch location (18) in a list  

 

  { P , stateVector, switchVector, activeSwitch }      (19) 

 

and insert that list entry into the list Proposals 

 

 Proposals = {   { P , stateVector, switchVector, activeSwitch }   }.  (20) 

 

N.B.: Instead of performing multiplications and divisions on the probabilities in (10) and (15), we also 

may perform summations and subtractions from the corresponding log-probabilities; this will guard 

against the potential underflow of the product of N  probabilities for large N . 

 

 

Step 4 

We now have come to the core of the Probability Sort algorithm. This core consists of a While-loop 

which runs until the desired number desiredNumber of probability sorted damage state vectors has 
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been obtained or until the Proposals list is empty, signifying that the total state space has been 

explored.  

 

count = 1; 

 

While[ (Length[Proposals] > 0)  OR  (count < desiredNumber) 

 

 Repeat Steps 5 and 6;        (21) 

 

count++ ] 

 

 

Step 5.a 

In each iteration of this While-loop the current Proposals list is updated by taking the list entry which 

has the greatest path probability P ; that is, take that list  

 

 { P, stateVector, switchVector, activeSwitch }.     (22) 

 

in Proposals where P  is maximal.  

 

Step 5.b 

We then make available the entities in the list (18) for the algorithmic steps that will follow, by 

setting  

 

workP = P ; 

workStateVector = stateVector ; 

workSwitchVector = switchVector ;       (23) 

workActiveSwitch = activeSwitch ; 

 

 

Step 5.c 

After which we remove the list entry (18) from the Proposals list. 

  

Step 5.d 

We then set 

 

 
( )1count+P  = P          (24) 

 

and the unsorted stateVector, see (8), 

 

 
( )1count +x  =  undoPermutate[ stateVector ]     (25) 

 

in a list 
( ) ( ){ }1count1count , ++ xP  and insert that list entry at the back of the list probabilitySort, so we 

obtain the updated list: 
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 probabilitySort = 
( ) ( ){ } ( ) ( ){ } ( ) ( ){ }{ }1count1count2211 ,,,,,, ++ xxx PPP K  .  (26) 

 

 

Step 5.e 

Finally, we update the total probability coverage variable: 

 

sumProb = sumProb + 
( )1count+P  ;       (26) 

 

 

Step 6 

Now, the candidate with the greatest path probability P , that is, (18), is allowed to generate 

offspring before it gets moved to the probSort list. Each candidate can get a maximum of three 

‘children’. As these children take the place of their progenitor in the Proposals list, they guarantee 

that  

a) all the remaining leaves of the event tree of the damage state space may still be explored, 

and 

 

b) that the next best probability is always in the updated Proposals list,  

 

Offspring may be produced as follows:  

 

Step 6.a 

Flip active switch one layer deeper, to a more improbable state, if permissible given maximum layer 

depth, and set that switch as the active switch and update the corresponding probability P and 

stateVector; that is,  

 

% first determine the number of possible damage states  

% for the infrastructural element under consideration: 

 

q = workActiveSwitch ; 

M = length(doublePermutatedProbMatrix(q,  :)  ; 

 

% elements in the switchVector take on values  

% from 0 (base-line damage  state with the highest probability)   

% to M – 1 (damage state the lowest probability)   

% So we have below that  0 ≤ r ≤ M – 1. 

 

r = workSwitchVector(q) ;  

If[ r  <  M – 1, 

 

% Set 

  P  = workP ; 

  stateVector  = workStateVector ; 
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 switchVector = workSwitchVector 

activeSwitch = workActiveSwitch ; 

 

     

%Then update 

  P = [ P/ doublePermutatedProbMatrix(q, r) ] ×  doublePermutatedProbMatrix(q, r + 

1); 

  stateVector(q) = doublePermutatedStateMatrix(q, r + 1) ;    

  switchVector(q) = r + 1; 

 

%Store the list  

  offSpring1  =  { P, stateVector, switchVector, workActiveSwitch } ; 

 

% anywhere in the Proposals list,  

Proposals = Insert [Proposals, offSpring1] ; 

 

%and close the If-statement. 

]; 

 

Step 6.b 

If active switch is a first layer switch, then de-activate switch and position switch one step forward if 

permissible given (a) row length or (b) a zero spot being available at that position, and activate that 

switch for that forward position. 

 

q = workActiveSwitch ; 

 

If[ (workSwitchVector(q) == 1)  AND  (q + 1 ≤  N ) AND (workSwitchVector(q + 1) == 0), 

 

% Set 

  P  = workP ; 

  stateVector  = workStateVector ; 

 switchVector = workSwitchVector 

activeSwitch = workActiveSwitch ; 

 

%Then update 

    P = [ P/ doublePermutatedProbMatrix(q, 2) ] ×  doublePermutatedProbMatrix(q, 1); 

    P =  [P / doublePermutatedProbMatrix(q + 1, 1) ] ×  doublePermutatedProbMatrix(q + 1, 

2); 

                       

        stateVector(q) = doublePermutatedStateMatrix(q, 1) ; 

       stateVector(q + 1) = doublePermutatedStateMatrix(q + 1, 2) ;  

    

                      switchVector(q) = 0; 

                      switchVector(q + 1) = 1; 
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       activeSwitch = q + 1; 

 

%Store the list  

  offSpring2  =  { P, stateVector, switchVector, activeSwitch } ; 

 

% anywhere in the Proposals list,  

Proposals = Insert [Proposals, offSpring2] ; 

 

%and close the If-statement. 

]; 

 

Step 6.c 

If the first entry in the switchVector is an available zero spot, then set that zero spot to a first level 

active switch, and update the corresponding probability P and stateVector; that is,  

 

If[ switchVector(1) == 0, 

  

% Set 

  P  = workP ; 

  stateVector  = workStateVector ; 

 switchVector = workSwitchVector 

activeSwitch = workActiveSwitch ; 

 

%Then update 

  P = [ P/ doublePermutatedProbMatrix(1,1) ] ×  doublePermutatedProbMatrix(1,2); 

  stateVector(1) = doublePermutatedStateMatrix(1, 2) ;     

  switchVector(1) = 1; 

activeSwitch = 1; 

 

%Store the list  

  offSpring3  =  { P, stateVector, switchVector, activeSwitch } ; 

 

% anywhere in the Proposals list,  

Proposals = Insert [Proposals, offSpring3] ; 

 

%and close the If-statement. 

]; 

 

 

Step 7: 

Print the probability coverage value sumProb and STOP.  

The list probabilitySort is now available to the user. 
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N.B.: We may set some probability criterion, say, crit, which the probabilities of the state vectors in 

the probabilitySort list must exceed. This criterion then has to be enforced by way of an If-statement 

in Steps 6.a, 6.b, and 6.c, as the Proposals list gets replenished by new offspring.  

 

Moreover, this probability criterion crit may also prohibit the elements of the switch vector from the 

(N – m)th element onwards to leave their optimal base-line states of 0, as the probabilities of switch 

state 1 from the (N – m)th element onwards puts the probability of the probability P of the adjusted 

base-line state vector  

 

P = 1; 

For[ i =1, i ≤  N, 

P = P ×  permutatedProbMatrix(i, 1);       

             i++] 

 

below the admissible threshold; that is, 

 

  Pm < … <  P2 <  P1 < crit   

 

where 

 

P1 = [ P/ doublePermutatedProbMatrix(N – m + 1,1) ] ×  doublePermutatedProbMatrix(N – m + 1, 2); 

P2 = [ P/ doublePermutatedProbMatrix(N – m + 2,1) ] ×  doublePermutatedProbMatrix(N – m + 1, 2); 

 

… 

 

Pm = [ P/ doublePermutatedProbMatrix(N,1) ] ×  doublePermutatedProbMatrix(N, 2); 

 

So, under a probability criterion crit we may set the length of the switch vector in (16) to be of the 

reduced length (N – m), rather than the full length N. 

 

A.3 MATLAB-Code 

% INPUTS 

  

% total number of desired scenario proposals  

desiredNumber = 10^6; 

  

% probability cut-off  

crit = log(10^-6); 

 

% begin explosion(s) 

input = [13]; 

  

% over-pressure value 

P = 200; 
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% grid definition 

nX = 5; 

nY = 5; 

 

% INSERT PROBABILITY MAP 

totalProbMap4 = probabilityMapUCL 

 

% DO DOUBLE SORT ON PROBABILITY MAP 

  

 

% total number of objects 

N = nX * nY; 

  

% sort within the rows 

damageState = zeros(N, 4); 

probability = zeros(N, 4); 

for i = 1 : N 

    [sortProb, index] = sort(totalProbMap4(i,:),'descend'); 

    probability(i,:) = sortProb; 

    damageState(i,:) = index; 

end 

  

% sort over the rows using the third column 

[sortedProb, index] = sortrows(probability,-3); 

sortedState = damageState(index,:); 

  

% indexRevert reverts second sort    

% probability - sortedProb(indexRevert, :) 

[~, indexRevert] = sort(index); 

  

% SET-UP PROPOSAL AND STORAGE LISTS 

  

% logarithm matrix of double sorted probabilities 

logSortedProb = log(sortedProb); 

  

% INITIALIZE PROPOSAL LIST 

% 1. probability 

firstProb = logSortedProb(:,1); 

% 2. ordered state vector 

firstState = sortedState(:,1); 

orderedState = firstState(indexRevert); 

  

% proposal probabilities; pre-allocate memory for better performance 

proposalProb = zeros(desiredNumber, 1); 

proposalProb(1) = exp(sum(firstProb)); 

% proposal state vectors; pre-allocate memory for better performance 

proposalState = zeros(desiredNumber, N); 

proposalState(1,:) = orderedState;  

  

  

% INITIALIZE STORAGE LIST 
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% 1. updated probability 

logProb = sum(firstProb) - logSortedProb(1,1) + logSortedProb(1,2); 

% 2. switch vector 

switchVector = zeros(N,1); 

switchVector(1) = 1; 

% 3. active switch 

activeSwitch = 1; 

% 4. updated state vector 

stateVector = firstState; 

stateVector(1) = sortedState(1,2); 

  

% storage; pre-allocate memory for better performance 

% probabilities 

storageProb = zeros(desiredNumber, 1); 

storageProb(1) = exp(logProb); 

% switch vector 

storageSwitchVector = zeros(desiredNumber, N); 

storageSwitchVector(1,:) = switchVector;  

% active switch 

storageActiveSwitch = zeros(desiredNumber, 1); 

storageActiveSwitch(1) = activeSwitch; 

% state vector 

storageStateVector = zeros(desiredNumber, N); 

storageStateVector(1,:) = stateVector;  

  

  

% CORE OF ALGORITHM 

  

sumProb = exp(sum(firstProb)); 

count = 2; 

  

oldPointer = []; 

pointer = 2; 

  

flag = 1; 

  

while flag == 1 

     

    % Choose optimal proposal from storage list 

    [prob, index] = max(storageProb); 

    switchVectorWork = storageSwitchVector(index,:); 

    activeSwitchWork = storageActiveSwitch(index); 

    stateVectorWork = storageStateVector(index,:); 

     

    % update proposals list 

    proposalProb(count) = prob;  

    orderedState = stateVectorWork(indexRevert); 

    proposalState(count,:) = orderedState;  

     

    % update probability coverage measure 

    sumProb = sumProb + prob; 
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    if mod(count,1000) == 0 

        count 

        sumProb 

    end 

     

     

    % break out of while-loop at the next iteration if necessary 

    if count == desiredNumber 

        flag = 0; 

    end 

     

     

    % update counter 

    count = count + 1; 

     

    % 'delete' optimal proposal from storage list  

    storageProb(index) = 0; 

     

    % set-up overwrite in storage list of the optimal proposal  

    oldPointer = [oldPointer; index]; 

     

    activeSwitch = activeSwitchWork; 

    switchVector = switchVectorWork; 

     

    q = activeSwitch; 

    m = switchVector(q); 

     

    % switches go from 0 to M-1 

    if m < 3 

        

        % additional working material 

        stateVector = stateVectorWork; 

         

        % update prob 

        logProb = log(prob); 

        logProb = logProb - logSortedProb(q,m+1) + logSortedProb(q,m+2); 

         

        % update switch vector 

        switchVector(q) = switchVector(q) + 1; 

         

        % update state vector 

        stateVector(q) = sortedState(q,m+2);  

         

        if ~isempty(oldPointer) 

            index2 = oldPointer(1); 

            drop = ones(length(oldPointer),1); 

            drop(1) = 0; 

            drop = logical(drop); 

            oldPointer = oldPointer(drop); 
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        else 

            index2 = pointer; 

            pointer = pointer + 1; 

        end 

         

        % fill storage matrices 

         

        % probability 

        storageProb(index2) = exp(logProb); 

        % switch vector 

        storageSwitchVector(index2,:) = switchVector;  

        % active switch 

        storageActiveSwitch(index2) = activeSwitch; 

        % state vector 

        storageStateVector(index2,:) = stateVector;  

         

    end 

     

    % restore switchVector 

    switchVector = switchVectorWork; 

     

    if (m == 1) && (q < N) && (switchVector(q + 1) == 0) 

         

        % additional working material 

        stateVector = stateVectorWork; 

         

        % update prob 

        logProb = log(prob); 

        logProb = logProb - logSortedProb(q,2) + logSortedProb(q,1); 

        logProb = logProb - logSortedProb(q+1,1) + logSortedProb(q+1,2); 

         

        % update switch vector 

        switchVector(q) = 0; 

        switchVector(q+1) = 1; 

         

        % update active switch 

        activeSwitch = q + 1; 

         

        % update state vector 

        stateVector(q) = sortedState(q,1);  

        stateVector(q+1) = sortedState(q+1,2);  

         

        if ~isempty(oldPointer) 

            index2 = oldPointer(1); 

            drop = ones(length(oldPointer),1); 

            drop(1) = 0; 

            drop = logical(drop); 

            oldPointer = oldPointer(drop); 

        else 

            index2 = pointer; 

            pointer = pointer + 1; 
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        end 

         

        % fill storage matrices 

         

        % probability 

        storageProb(index2) = exp(logProb); 

        % switch vector 

        storageSwitchVector(index2,:) = switchVector;  

        % active switch 

        storageActiveSwitch(index2) = activeSwitch; 

        % state vector 

        storageStateVector(index2,:) = stateVector;  

   

    end 

     

    % restore switchVector 

    switchVector = switchVectorWork; 

   

    if switchVector(1) == 0 

         

        % additional working material 

        stateVector = stateVectorWork; 

         

        % update prob 

        logProb = log(prob); 

        logProb = logProb - logSortedProb(1,1) + logSortedProb(1,2); 

             

        % update switch vector 

        switchVector(1) = 1; 

        

        % update active switch 

        activeSwitch = 1; 

         

        % update state vector 

        stateVector(1) = sortedState(1,2);  

       

 

         if ~isempty(oldPointer) 

            index2 = oldPointer(1); 

            drop = ones(length(oldPointer),1); 

            drop(1) = 0; 

            drop = logical(drop); 

            oldPointer = oldPointer(drop); 

        else 

            index2 = pointer; 

            pointer = pointer + 1; 

        end 

         

 

        % fill storage matrices 
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        % probability 

        storageProb(index2) = exp(logProb); 

        % switch vector 

        storageSwitchVector(index2,:) = switchVector;  

        % active switch 

        storageActiveSwitch(index2) = activeSwitch; 

        % state vector 

        storageStateVector(index2,:) = stateVector;  

              

    end  

     

end 

 

A.4 A Pen and Paper Algorithmic Run 

We now give a pen and paper algorithmic run of the proposed Probability Sort algorithm for state 

vectors having probabilities greater or equal to crit = 
610−

, for the most simple non-trivial case 

where we have 3=N  elements each having 3=M  possible damage states. This in order to give 

the reader/programmer a concrete sense of the here proposed algorithm. 

 

Let  

 





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probMatrix    (1) 

 

and let the state matrix be such that its column is equivalent to the switch vector and its subsequent 

switching layers: 

 

 

















=

210

210

210

xstateMatri        (2) 

 

Then ML proposal [ ]( )1
000  has a probability of (1) and (2) 

 

 
( )

12

6
1

10

10890109

1000000

999000

10000

9900

100

90 ×
=××=P  

 

So, we set the ProbabilitySort list as 
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 ProbabilitySort  = [ ]( )















 × 1

12

6

000,
10

10890109
  

 

The next best state vector in terms of being the next most probable state vector then is given as:  

  

[ ]( ) [ ]( )
12

5
21

10

10890109
,00000

×
→ 1 , 

 

as (1) and (2) 

 

 
( )
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5
2

10

10890109

1000000

999000

10000

9900

100

9 ×
=××=P , 

 

And where the bold face underlined switch state points to the active switch position. So, we set the 

Proposals list as 

 

 Proposals  = [ ]( )















 × 2
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5

00,
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1  

 

In the first iteration of the While-loop we then insert the most probable of the proposals in the 

probability sort list 

 

 ProbabilitySort  = [ ]( ) [ ]( )















 ×







 × 2
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5
1
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6
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10
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,000,
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After we clean up the Proposals list as 

 

 Proposals  = { } 

 

We then go through the three offspring checkpoints: 

 

[ ]( )

[ ]( )

[ ]( )

( )[ ]( )
n.a.,001,1

10

10890109
,00

10

1098901
,00

00
12

4
4

12

5
3

2

reject

×

×

→ 1

2

1  

 

So as we store the proposals [ ]( )3
002  and [ ]( )4

00 1  into the Proposals list with the 

corresponding probabilities  
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 Proposals  = [ ]( ) [ ]( )










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

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

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
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12

4
3

12

5
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10
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12  

 

In the next While-iteration we then have the most probable state vector [ ]( )3
002  and add it 

together with its probability to the probability sort list, as we remove that entry from the proposals 

list:  

 

ProbabilitySort  = 

[ ]( )

[ ]( )
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Proposals  = [ ]( )















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We have in this While-iteration  

 

[ ]( )

[ ]( )

[ ]
( )[ ]( )reject

reject

reject

001,2

00

00

00
3

1

3

2 →  

 

So, we have at the end of the While-iteration proposals list is not replenished. 

 

Proposals  = [ ]( )















 × 4

12

4

00,
10

10890109
1  

 

In the next While-iteration we then have the most probable state vector [ ]( )4
00 1  and add it 

together with its probability to the probability sort list, as we remove that entry from the proposals 

list:  
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ProbabilitySort  = 

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×











 ×

4

12

4

3

12

5

2

12

5

1

12

6

010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

 

 

 Proposals  = { } 

 

We have in this While-iteration the parent [ ]( )4
00 1 , which begets the offspring  

 

[ ]( )

[ ]( )

[ ]( )

[ ]( )
12

3
7

12

3
6

12

4
5

4

10

10890109
,01

10

10890109
,00

10

108991
,00

00

×

×

×

→

1

1

2

1   

 

So, we have at the end of the While-iteration the replenished proposals list 

 

 Proposals  = 

[ ]( )

[ ]( )

[ ]( )











 ×







 ×











 ×

7

12

3

6

12

3

5

12

4

01,
10

10890109

,00,
10

10890109

,00,
10

108991

1

1

2

 

 

 

In the next While-iteration we then have as the most probable state vector a choice between 

[ ]( )6
00 1  and [ ]( )7

011  . We may choose either of these proposals and add it together with its 

probability to the probability sort list, as we remove that entry from the proposals list, say  
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 ProbabilitySort  = 

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×







 ×











 ×

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

 

 

 Proposals  = 

[ ]( )

[ ]( )











 ×











 ×

7

12

3

5

12

4

01,
10

10890109

,00,
10

108991

1

2

 

 

We have in this While-iteration the parent [ ]( )6
00 1 , which begets the offspring  

 

 [ ]( )

[ ]( )

[ ]( )

[ ]( )
12

2
9

12

3
8

6

10

10890109
,10

n.a.,000

10

10891
,00

00

×

×

→

1

1

2

1
reject

 

 

So, we have at the end of the While-iteration the replenished proposals list 

 

 Proposals  = 

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×











 ×

9

12

2

8

12

3

7

12

3

5

12

4

10,
10

10890109

00,
10

10891

01,
10

10890109

,00,
10

108991

1

2

1

2
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In the next While-iteration we then have as the most probable state vector [ ]( )7
011  . We add it 

together with its probability to the probability sort list, as we remove that entry from the proposals 

list: 

 

 ProbabilitySort  = 

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×







 ×







 ×











 ×

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

 

 

 

Proposals  = 

[ ]( )

[ ]( )

[ ]( )











 ×







 ×











 ×

9

12

2

8

12

3

5

12

4

10,
10

10890109

,00,
10

10891

,00,
10

108991

1

2

2

 

 

We have in the next While-iteration the parent [ ]( )7
011 , which begets the offspring  

 

 [ ]( )

[ ]( )

( )[ ]( )

( )[ ] n.a.,011,1

n.a.,01,10

10

1098901
,01

01

12

3
10

7

reject

reject

×

→

2

1  

 

So, we have at the end of the While-iteration the replenished proposals list 
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Proposals  = 

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×











 ×

10

12

3

9

12

2

8

12

3

5

12

4

01,
10

1098901

,10,
10

10890109

,00,
10

10891

,00,
10

108991

2

1

2

2

  

 

In the next While-iteration we then have as the most probable state vector [ ]( )10
012  . We add it 

together with its probability to the probability sort list,   

  

 ProbabilitySort  = 

 

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×







 ×







 ×







 ×











 ×

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

 

 

as we remove that entry from the proposals list. We have in this While-iteration the parent 

[ ]( )10
012 , which begets no offspring  

 

 [ ]( )

[ ]( )

( )[ ]( )

( )[ ]reject

reject

reject

011,2

01,10

01

01
10

3

2 →  

 

So, we have at the end of the While-iteration the updated proposals list 
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 Proposals  = 

[ ]( )

[ ]( )

[ ]( )











 ×







 ×











 ×

9

12

2

8

12

3

5

12

4

10,
10

10890109

,00,
10

10891

,00,
10

108991

1

2

2

 

 

In the next While-iteration we then have as the most probable state vector [ ]( )5
00 2  . We add it 

together with its probability to the probability sort list,   

  

 ProbabilitySort  = 

 

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×







 ×







 ×







 ×







 ×











 ×

5

12

4

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

020,
10

108991

,012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

 

 

as we remove that entry from the proposals list. We have in this While-iteration the parent 

[ ]( )5
00 2 , which begets the offspring  

 

 [ ]( )

[ ]( )

[ ]( )

[ ]( )
12

3
11

5

10

108991
,02

n.a.,00

n.a.,00

00

×

→

1

1

3

2
reject

reject

 

 

So, we have at the end of the While-iteration the updated and replenished proposals list 
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 Proposals  = 

[ ]( )

[ ]( )

[ ]( )











 ×







 ×











 ×

11

12

3

9

12

2

8

12

3

02,
10

108991

,10,
10

10890109

,00,
10

10891

1

1

2

 

In the next While-iteration we then have as the most probable state vector [ ]( )9
101  . We add it 

together with its probability to the probability sort list, as we remove that entry from the proposals 

list: 

 

 ProbabilitySort  = 

 

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×











 ×

9

12

2

5

12

4

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

101,
10

10890109

,020,
10

108991

,012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

  

 

We have in this While-iteration the parent [ ]( )9
101 , which begets the offspring  

 

 [ ]( )

[ ]( )

[ ]( )

( )[ ]( )
n.a.,101,1

10

10890109
,10

10

1098901
,10

10
12

13

12

2
12

9

reject

×

×

→ 1

2

1  
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So, we have at the end of the While-iteration the updated and replenished proposals list 

 

 Proposals  = 

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×











 ×

13

12

1

12

12

2

11

12

3

8

12

3

10,
10

10890109

,10,
10

1098901

,02,
10

108991

,00,
10

10891

1

2

1

2

 

 

In the next While-iteration we then have as the most probable state vector [ ]( )12
102 . We add it 

together with its probability to the probability sort list,  

 

 ProbabilitySort  = 

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×











 ×

12

12

2

9

12

2

5

12

4

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

102,
10

1098901

,101,
10

10890109

,020,
10

108991

,012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109
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as we remove that entry from the proposals list. We have in this While-iteration the parent 

[ ]( )12
102 , which begets no offspring  

 

[ ]( )

[ ]( )

[ ]( )

( )[ ]( )reject

reject

reject

101,2

10

10

10
12

1

3

2 →   

 

So the updated proposals list at the end of the While-iterations is 

 

 Proposals  = 

[ ]( )

[ ]( )

[ ]( )











 ×







 ×











 ×

13

12

1

11

12

3

8

12

3

10,
10

10890109

,02,
10

108991

,00,
10

10891

1

1

2

 

 

In the next While-iteration we then have as the most probable state vector [ ]( )11
021 . We add it 

together with its probability to the probability sort list,  
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ProbabilitySort  =  

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×











 ×

11

12

3

12

12

2

9

12

2

5

12

4

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

021,
10

108991

,102,
10

1098901

,101,
10

10890109

,020,
10

108991

,012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

 

 

as we remove that entry from the proposals list. We have in this While-iteration the parent 

[ ]( )11
021 , which begets the offspring  

 

[ ]( )

[ ]( )

( )[ ]( )

( )[ ]( )
n.a.,021,1

n.a.,01,20
10

10999
,02

02

12

3
14

11

reject

reject

×

→

2

1   

 

So the updated proposals list at the end of the While-iterations is 
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 Proposals  = 

[ ]( )

[ ]( )

[ ]( )











 ×







 ×











 ×

14

12

3

13

12

1

8

12

3

02,
10

10999

,10,
10

10890109

,00,
10

10891

2

1

2

 

 

In the next While-iteration we then have as the most probable state vector [ ]( )12
10 1 . We add it 

together with its probability to the probability sort list,  

 

 ProbabilitySort  = 

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )

[ ]( )











 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×











 ×

13

12

1

11

12

3

12

12

2

9

12

2

5

12

4

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

110,
10

10890109

,021,
10

108991

,102,
10

1098901

,101,
10

10890109

,020,
10

108991

,012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109
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as we remove that entry from the proposals list. We have in the next While-iteration the parent 

[ ]( )13
10 1 , which begets the offspring  

 

 [ ]( )

[ ]( )

( )[ ]( )

[ ]( )
12

16

12

15

13

10

890109
,11

n.a.,1,100

10

108991
,10

10

1

2

1
reject

×

→  

 

So, we have at the end of the While-iteration the updated and replenished proposals list 

 

 Proposals  = 

[ ]( )

[ ]( )

[ ]( )

[ ]( )



















 ×







 ×











 ×

16

12

15

12

14

12

3

8

12

3

11,
10

890109

,10,
10

108991

,02,
10

10999

,00,
10

10891

1

2

2

2

 

 

All the remaining proposals have probabilities smaller than 
610−

, which is why we (arbitrarily) 

terminate this pend-and-paper run.  

 

Note that we build in the (arbitrary) If-statement for crit = 
610−

 into the algorithmic Step 6.a, 6.b, 

and 6.c, then the above Proposals list would have been empty and the algorithm would have 

terminated automatically at this point. 

 

We give below the rest of the event-tree coverage without the corresponding probabilities. 

 

[ ]( )

[ ]( )

[ ]( )

[ ]( )17

8

20

000

00

00

1

1

3

2
reject

reject

→   

 

[ ]( )

[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

reject

021,2

01,20

02

02
14

3

2 →  

 

[ ]( )

[ ]( )

( )[ ]( )

[ ]( )18

15

12

1,100

10

10

1

3

2
reject

reject

→   
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[ ]( )

[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

111,1

11,10

11

11

19

16

2

1 →   

 

[ ]( )

[ ]( )

[ ]( )

( )[ ]( )reject
201,1

20

20

20
21

20

17
1

2

1 →   

 

[ ]( )

[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

121,1

11,20

12

12

22

18

2

1 →  

 

[ ]( )

[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

reject

111,2

11,10

11

11
19

3

2 →  

 

[ ]( )

[ ]( )

[ ]( )

( )[ ]( )reject

reject

reject

201,2

20

20

20
20

1

3

2 →  

  

[ ]( )

[ ]( )

( )[ ]( )

[ ]( )24

23

21

21

1,200

20

20

1

2

1
reject

→   

 

[ ]( )

[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

reject

121,2

11,20

12

12
22

3

2 →   

 

[ ]( )

[ ]( )

( )[ ]( )

[ ]( )25

23

22

1,200

20

20

1

3

2
reject

reject

→   

 

[ ]( )

[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

211,1

21,10

21

21

26

24

2

1 →  
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[ ]( )

[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

221,1

21,20

22

22

27

25

2

1 →  

 

[ ]( )

[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

reject

211,2

21,10

21

21
26

3

2 →  

 

 [ ]( )

[ ]( )

( )[ ]( )

( )[ ]( )reject

reject

reject

221,2

21,20

22

22
27

3

2 →  

 

And we see that the algorithm covers all of the 2733 ==N
M  leaves in our event tree. 
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APPENDIX B: DELPHI PANELS 

A stress testing Delphi panel should lead to the formulation of a set of stress scenarios for road/rail 

networks. Comprehensive identification of relevant scenarios is critical, because scenarios excluded 

in this task will not be included in further analysis and may result in an incorrect estimation of risk. 

To minimise the possibility of this happening it is important that experts in each area are involved, as 

argued by Adey et al. (2016). In this appendix, some background about Delphi panels, its 

composition, its size, its working methods, etc. is given.  

 

The Delphi method is a method for knowledge elicitation which relies on a panel of independent 

experts (Rowe G., Wright G., 2001). The basic principle of Delphi is that forecasts from a structured 

group of experts are more accurate than those from unstructured groups or individuals. The 

properties of the different group communication techniques are presented in Table B.1 (The Delphi 

Method: Techniques and Applications, 2002). Depending on the chosen technique and number of 

items addressed the survey can take in average from 1 week to 6 months and may cost from 1.000 

to 1.5 million euro.  

 

There are few key characteristics of Delphi: regular feedback of individual contributions of 

information and knowledge; assessment of the group judgment or' view; opportunity for individuals 

to revise views; and anonymity of the participants (The Delphi Method: Techniques and Applications, 

2002).  There are different ways how Delphi can be applied in the framework of these main 

characteristics, ranging from qualitative to quantitative, to mixed.  

 

The advantages of using Delphi: 

 

• Allows freely expressions of opinions and ideas by a large number of participants. 

• Discussions and results are not influenced by one leader. 

• It is convenient as it allows participants who are geographically distanced, to work from own 

home or office. 

• Participants have an opportunity to think deeper and gather more information on issue 

between the rounds. 

• Allows long-term thinking (gives view on future) and in the same time orientated towards 

actions. 

• It shows well performance when the issue is complex. 

• Highlight a consensus decision (if it is reached or not). 

• Provides a transparent and democratic technique. 

 

Disadvantages: 

 

• It takes time for organisers and can be expensive to run the survey.  

• May be difficult to motivate participants. 

• Some participants may drop out during the process (especially after the first round). 

• Results may be influenced by the set of participants involved.  

• Will not build relationships or generate a dialogue between participants. 

• There is a danger of ignoring a single opinion that might have of special value.  
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Rowe and Wright (2001) suggested to use the following principal to receive a better result: 

 

• Knowledgeable experts 

• Heterogeneous experts (who focus in the field of research area) 

• Groups of 5 to 20 experts  

• Mean or median estimates of the panel and rationales of these estimate for feedback. 

• Rounds should continue until stable results arrive (usually 3 rounds are enough). 

 

Gibbs and others (2001) suggested to invite as experts the participants who fulfill such criteria as: 

Participants have published articles in the last five years on the topic of research; Participants have 

taught courses about these topics; or Participants' primary employment responsibilities are related 

to these areas. According to the some authors (Delbecq et al., 1975; Murphy et al., 1998) this gives a 

wide perspective and range of alternatives that will lead to better performance. The number of 

experts which can give the best accuracy is, however, uncertain. Some of the publications suggested 

that there is no clear difference in accuracy (Brockhoff, 1975; Boje, Murnighan, 1982; Powell, 2003). 

Participants may have different arguments of their opinions even if the opinions are similar. It can 

give additional information and therefore should be included together with the feedback from 

estimates outside the quartiles. Rowe and Wright (2001) pointed out that the first round is more 

valuable as it is unstructured. It gives the experts the possibility to specify key issues and formulate 

relevant and balanced sets of questions. However, a lot of studies use structured questionnaires in 

the first stage.  
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Group Communication Techniques 

 Conference 

Telephone 

Call 

Committee 

Meeting 

Formal Conference 

or Seminar 

Conventional Delphi Real-Time Delphi 

Effective Group 

Size 

Small Small to Medium Small to Large Small to Large Small to Large 

Occurrence of  

Interaction by 

Individual 

Coincident 

with group 

Coincident with 

group 

Coincident with 

group 

Random Random 

Length of 

Interaction 

Short Medium to Long Long Short to Medium Short 

Number of 

Interactions 

Multiple, as 

required by 

group 

Multiple, 

necessary time 

delays between 

Single Multiple, necessary 

time delays 

between 

Multiple, as required 

by individual 

Normal Mode 

Range 

Equality to 

chairman 

control 

(flexible) 

Equality to 

chairman control 

(flexible) 

Presentation 

(directed) 

Equality to monitor 

control (structured) 

Equality to monitor 

control or group 

control and no 

monitor (structured) 

 Conference 

Telephone 

Call 

Committee 

Meeting 

Formal Conference 

or Seminar 

Conventional Delphi Real-Time Delphi 

Principal Costs Communica

tions 

• Travel 

• Individual's 

Time 

• Travel 

• Individual's Time 

• Fees 

• Monitor Time 

• Clerical 

• Secretarial 

• Communications 

• Computer Usage 

 Time-urgent 

consideratio

ns 

Forced delays  Forced delays Time-urgent 

considerations 

Other 

Characteristics 

• Equal flow of information to 

and from all 

• Can maximize psychological 

effects 

Efficient flow of 

information from 

few to many 

• Equal flow of information to and from all 

• Can minimize psychological effects 

• Can minimize time demanded of 

respondents or conferees 

Table B.1: The Delphi Method: Techniques and Applications 


