

© The INFRARISK Consortium

FP7 2013 Cooperation Work Programme

Theme 6: Environment (Including Climate Change)

Novel indicators for identifying critical

INFRAstructure at RISK from Natural Hazards

Deliverable D6.2

This project has received funding from the European Union’s Seventh Programme for research,

technological development and demonstration under grant agreement No 603960.

Primary Author Pieter van Gelder, Noel van Erp/ Probabilistic Solutions Consult

and Training (PSCT)

WP 6

Submission Date 29/11/2016

Primary Reviewer Alan O’Connor/Roughan & O’Donovan Ltd. (ROD)

Dissemination Level PU

Stress Test Framework for Systems

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

Project Information

Project Duration:

Project Coordinator:

Work Programme:

Call Topic:

Project Website:

Partners:

 Stress Test Framework for Systems

1/10/2013 - 30/09/2016

Professor Eugene O' Brien

Roughan & O’ Donovan Limited

eugene.obrien@rod.ie

2013 Cooperation Theme 6:

Environment (Including Climate Change).

Env.2013.6.4-4 Towards Stress Testing of Critical Infrastructure

Against Natural Hazards-FP7-ENV-2013-two stage.

www.infrarisk-fp7.eu

Roughan & O’ Donovan Limited, Ireland

Eidgenössische Technische Hochschule Zürich

Dragados SA, Spain.

Gavin and Doherty Geosolutions Ltd., Ireland.

Probabilistic Solutions Consult and Training BV, Netherlands.

Agencia Estatal Consejo Superior de Investigaciones Científicas,

Spain.

University College London, United Kingdom.

PSJ, Netherlands.

Stiftelsen SINTEF, Norway.

Ritchey Consulting AB, Sweden.

University of Southampton (IT Innovation Centre), United

Kingdom.

Stress Test Framework for Systems

i

4 Towards Stress Testing of Critical Infrastructure

two stage.

Eidgenössische Technische Hochschule Zürich, Switzerland.

Ireland.

Probabilistic Solutions Consult and Training BV, Netherlands.

Agencia Estatal Consejo Superior de Investigaciones Científicas,

University College London, United Kingdom.

University of Southampton (IT Innovation Centre), United

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

© The INFRARISK Consortium iii

Document Information

Version Date Description Primary Author

Rev01 November 2015 Deliverable D6.2:

Development of

framework, design and

optimization of stress

tests in infrastructural

systems

H.R.N. van Erp,

R.O. Linger, P. Prak,

P.H.A.J.M. van Gelder.

Rev02 March 2016 Deliverable D6.2:

Revised based on

review by UCL and

ROD

H.R.N. van Erp,

R.O. Linger, P. Prak,

P.H.A.J.M. van Gelder.

Rev03 July 2016 Revised based on

review by ROD

H.R.N. van Erp,

R.O. Linger, P. Prak,

P.H.A.J.M. van Gelder.

Rev04 September 2016 Revised based on

review by ROD

H.R.N. van Erp,

R.O. Linger, P. Prak,

P.H.A.J.M. van Gelder

This document and the information contained herein may not be copied, used or disclosed in whole

or part except with the prior written permission of the partners of the INFRARISK Consortium. The

copyright and foregoing restriction on copying, use and disclosure extend to all media in which this

information may be embodied, including magnetic storage, computer print-out, visual display, etc.

The information included in this document is correct to the best of the authors’ knowledge.

However, the document is supplied without liability for errors and omissions.

All rights reserved.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

© The INFRARISK Consortium iv

Executive Summary

In the INFRARISK project, infrastructural systems (e.g. collections of roads, bridges, train-tracks, etc.)

are modelled as probabilistic systems where individual components are represented by way of

individual stochastics which express if these individual components are compromised damage-wise

for a given hazard load. Probabilistic representations of a given infrastructural system are subjected

to virtual shocks corresponding with some stress scenario. This allows us to gauge how the efficacy

of the probabilistic representation has been compromised by the applied shocks and come to some

estimate on the effects of possible stress scenarios that have not yet materialized.

In this deliverable, a general stress test framework is offered up in which a stress test is a special

instance of a risk assessment, where instead of marginalizing over the entire possible stress

scenarios one specific stress scenario is chosen instead for which to gauge its potential effects.

This stress test framework is simple enough on the conceptual side. On the practical side, however,

when one wishes to implement this framework, things can quickly become non-trivial. For example,

if our probabilistic system consists of N components, each of these components having M possible

states, then the total density of states of the system as a whole will consist of N
M

 possible states.

This is an instance of the well-known “curse of dimensionality” which will necessitate the use of

sampling techniques the state probability distribution on the system level. In this deliverable,

sampling methods are discussed by which stress tests may be evaluated on probabilistic systems

which consist of a large number of stochastics.

If the probabilistic system consists of stochastically dependent components then it is recommended

to use the novel Nested Sampling algorithm in order to evaluate the dependencies between these

stochastic components, whereas traditional Monte Carlo sampling method will suffice if the

stochastics within a probabilistic system are independent. Also, a specific type of a stress scenarios

are cascading effects scenarios. For Task 6.2 there has been developped the Probability Sort

algorithm which allows one to model temporal and spatial uncertainties in cascading effect risk

scenarios.

The research results of this deliverable are relevant for all those, be they infrastructural managers or

not, that wish to evaluate the state probability distribution of probabilistic systems that have been

constructed as systems of stochastic components that are spatially and/or temporally dependent.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

© The INFRARISK Consortium v

Table of Contents

Executive Summary .. iv

Table of Contents .. v

1.0 INTRODUCTION .. 7

2.0 A STRESS TEST DEFINITION .. 8

2.1 Introducing Stress Tests .. 8

2.2 Why Perform Stress Tests? ... 9

2.3 Stress Testing for Infrastructural Risk Managers .. 10

3.0 QUANTIFYING THE EFFECT OF STRESS SCENARIOS IN TRANSPORT SYSTEMS 18

3.1 A System Description .. 18

3.2 The Probability Model ... 19

3.3 Estimating Fragility Parameters .. 20

3.4 Connecting Fragility Parameter Estimates to Damage State Probabilities 23

3.5 Computing a Damage State Probability Map for a Stress Scenario 23

3.6 Assigning Probabilities to Damage State Vectors ... 24

3.7 Assigning Direct Repair Costs to Damage State Vectors ... 26

3.8 Evaluating the Repair Cost Probability Distribution ... 27

4.0 UNIVARIATE REPRESENTATIONS OF MULTIVARIATE PROBABILITY DISTRIBUTIONS 29

4.1 Univariate Representations .. 29

4.2 Retention of Pertinent Probability Density Information .. 32

4.3 Generating Representative Samples ... 33

5.0 REPRESENTATIVE SAMPLES FROM SYSTEMS OF INDEPENDENT COMPONENTS 38

5.1 Sampling from Probability Sorted Total System Representations .. 38

5.2 MC-Sampling from Independent System Components .. 42

5.3 Sampling Recommendation .. 45

6.0 NESTED SAMPLING ... 47

6.1 Sampling Abcissa’s .. 47

6.2 The Basic Nested Sampling Algoritm .. 48

6.3 Issues of Computational Efficiency ... 51

7.0 THE PROBABILITY SORT ALGORITHM ... 53

8.0 THE MODELLING OF CASCADING EFFECTS .. 56

8.1 The ‘Physics’ Behind the Probability Map ... 56

8.2 Some Example Probability Maps .. 57

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

© The INFRARISK Consortium vi

8.3 Probability Sort Analysis of Cascading Effects .. 58

9.0 CONCLUSIONS .. 64

REFERENCES ... 65

APPENDIX A: THE PROBABILITY SORT ALGORITHM .. 68

A.1 Algorithmic Outline ... 68

A.2 Pseudo-Code ... 68

A.3 MATLAB-Code ... 77

A.4 A Pen and Paper Algorithmic Run ... 83

APPENDIX B: DELPHI PANELS .. 99

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

7
© The INFRARISK Consortium

1.0 INTRODUCTION

In this deliverable we give a general stress test definition as well as a discussion of a suite of

algorithms that will allow one to apply this general stress test definition to probabilistic systems that

consist of a large number of stochastic components.

In Chapter 2 a general stress definition is given. This stress test definition is explicitly linked to the

overarching risk assessment methodology proposed in work package 4 of the INFRARISK project.

In order to illustrate the relevancy of the work presented in Chapters 4 through 8, a small case sudy

is given in Chapter 3 for a system of 5 bridges of two different types, where an ensemble of fragility

curves is derived for each bridge type, by taking not only into account (artificial) sampling

uncertainty but also the (non-trivial) parameter uncertainty that invariable will occur in these

problems. In this small case study Nested Sampling is used to take into account the dependencies

between the fragility parameters. Probability maps for each bridge in the system may then be

obtained by taking an ensemble of the conditional bridge probability maps over all the probalble

fragility parameter combinations. Using these probability maps, which constitute a system of

independent components/damage state probability distributions, we may use traditional Monte

Carlo (MC) sample to come to a representative (i.e. having the greatest multiplicity) sample of

damage state vectors.

In Chapters 4, 5, and 6, it is recommended that for large systems of dependent components/

parameters the Nested Sampling be used to take into account these depedendencies. For large

systems of independent compoents it is recommended to use traditional MC methods.

Finally, a novel Probability Sort algorithm is presented in Chapter 7 and Appendix A, by which

cascading effects may be modelled with a high degree of accuracy, as is demonstrated in Chapter 8.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

8
© The INFRARISK Consortium

2.0 A STRESS TEST DEFINITION

2.1 Introducing Stress Tests

A scenario is a possible future environment, either at a point in time or over a period of time. A

projection of the effects of a scenario over the time period studied can address any kind of system,

from local regions, to countries, to entire continents. To determine the relevant aspects of a possible

future environment, one or more events or changes in circumstances may be forecast, possibly

through identification or simulation of several risk factors. The effect of these events or changes in

circumstances in a scenario can be generated from a shock to the system resulting from a sudden

change in a single variable or risk factor. Scenarios can also be complex, involving changes to and

interactions among many factors over time, as, for example, in cascading events (IAA, 2013).

It can be helpful in scenario analysis to provide a narrative (story) behind the scenario, including the

risks (i.e. triggering events) that generated the scenario. Because the future is uncertain, there are

many possible scenarios. In addition, there may be a range of effects on a particular system arising

from each scenario. The projection of the financial effects during a selected scenario will likely differ

from those seen using the modeller’s best expectation of the way the current state of the world is

most likely to evolve. Nevertheless, an analysis of alternative scenarios can provide useful

information to involved stakeholders (IAA, 2013).

Sensitivity considers the effect of a set of alternative assumptions regarding some scenario. This

alternative scenario can be the result of a single or several alternative risk factors, occurring either

over a short or long period of time. A scenario used for sensitivity testing usually represents a

relatively small change in these risk factors or their likelihood of occurrence. A scenario with

significant or unexpected adverse consequences is referred to as a stress scenario.

A stress test is a projection of a particular system under a specific set of severe to moderately

adverse conditions (i.e. stress scenarios). The forecast in the figure below represents the best case

projection, deviations from which would constitute the effect of sensitivities and stress scenarios

(where sensitivities are those scenarios that are close to the projected forecast scenario), Figure 2.1.

Figure 2.1: Stress Scenarios (IAA, 2013)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

9
© The INFRARISK Consortium

While the study of the effect of likely scenarios is useful for business planning and for the estimation

of expected profits or losses, the assessing of the impact of rare and/or catastrophic future events,

or even moderately adverse scenarios can enhance a risk culture, as it can alert decision makers to

potentially inconvenient truths and provide a framework to enable them to base their operational

strategies and risk mitigation activities on a range of scenarios, rather than a single best-estimate

projected forecasts. In the actuarial sciences stress testing is considered to be essential tools for

effective risk management and prudential oversight (IAA, 2013).

2.2 Why Perform Stress Tests?

The purpose of stress testing is not so much to predict future events, but rather to stimulate

stakeholders to be prepared in case a disruptive event should occur (IAA, 2013). Stated differently,

stress tests are done to get an answer to the question “How much could be lost?” in some worst

case scenario, rather than the question “How much is likely to be lost?” under the current status

quo, (Blaschke et al., 2001). Stress tests help to show us the parts of the system that need to be

strengthened, or, if this is not feasible, as the stress scenario is too severe to build against (e.g. "the

big one", along the San Andreas fault), the post-disaster contingencies we need to prepared for

should our stress scenario materialize.

For an example of a successful stress test, in 2003 the regulators in Australia (APRA) conducted a

stress test focusing on the domestic exposure of their banks and mortgage insurance companies to a

decline in housing prices, leading to an equity shock. Based on the results of this stress test, APRA

was able to implement regulatory safeguards that led them to avoid the issues faced by most

jurisdictions following the collapse of the American mortgage market at the start of the financial

crises in 2008-2009.

For an example of a missed stress test opportunity, the Fukushima Daiichi plant levees were build to

withstand typhoon related 5.7m wave heights, while the exceedance return period of 10m tsunamis

was only a mere 36 years, as 14 tsunamis of at least 10m have been observed in the last 500 years

on the Japanese west coast (Krauß and Berg, 2011). Had the Fukushima Daiichi event been studied

by way of a tsunami stress testing exercise prior to it happeningthe event occuring, then one of the

possible outcomes with probability greater than zero would have been the outcome that we are

currently witnessing; the outcome where a large part of Northern Japan has been radioactively

contaminated.

In light of the fact that Fukushima Daiichi levees were only designed for typhoons, we find it

plausible that a Fukushima Daiichi stress test would have compelled the relevant stakeholders to

install also tsunamis typhoons, or, at the very least, move the power back-up from the cellar to the

roof. Moreover, it is a distinct possibility that the Fukushima Daiichi incident escalated to a

nationwide calamity, only because of the absence of simple emergency protocols, as a more timely

depressurisation of the reactor coolant systems by the Fukushima Daiichi staff would have allowed

for coolant injection by way of fire pumps, which might have helped to prevent cataclysmic core

damage (Krauß and Berg, 2011). So it can be argued that a stress test exercise prior to the 2011

tsunami might have given the Fukushima Daiichi stakeholders a timely warning to put such

emergency protocols in play at their nuclear plant.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

10
© The INFRARISK Consortium

2.3 Stress Testing for Infrastructural Risk Managers

In analogy with the actuarial stress test definition, an infrastructure stress test is defined as an

analysis conducted under an unfavorable scenario, which is designed to determine whether there

are inacceptable infrastructure related risks for a given unfavorable scenario. Stress tests may help

detect objects that if “strengthened” through the execution of preventive interventions will greatly

decrease the infrastructure related risk (i.e. hard engineering measures) and/or determine those

non-engineering mitigation actions that will minimize the detrimental effects of a loss of

functionality of the infrastructure (i.e. “soft” policy measures).

In this deliverable we will propose a general framework by which to quantify stress tests
1
. The stress

test framework, at its highest level of abstraction, is a sub-set of the general risk assessment

framework which is discussed below. In a stress test one assumes that some extreme hazard event

has actually occurred, whereas in a risk assessment the effects of all hazard scenarios are accounted

for and weighted by their respective probabilities of occurrence. In what follows we will first give a

general discussion of Infrarisk’s general risk assessment framework, as outlined in D4.2 (Heckl et al.,

2016), after which we will turn to stress tests, as a special class of risk assessments.

2.3.1 The General Risk Assessment Framework

The general risk management process proposed in Infrarisk’s D4.2 includes different sub-processes

(Adey et al. 2014): the (1) problem identification process, (2) the system definition processes, (3) the

risk identification process, (4) the risk analysis process, (5) the risk evaluation process, and (6) risk

treatment.

In the problem identification step the information need of the relevant stakeholders is specified, as a

first outline is given of the type of hazards that are to be studied in a given area and their effects on

the objects of interest. So, an example of a risk assessment problem identification would be the

general question: ‘What dangers do earthquakes (type of hazards) pose to Bologna’s (area) ten-T

road network (object of interest)?’

In the system definition step a system representation is constructed. A system representation is a

model of some relevant part of reality and consists of all the relevant realisations of the stochastic

(i.e. uncertain) processes within the investigated time period. It includes the consideration of

assumptions as to how the system will react in certain specific situations, and drawing fixed system

boundaries, where it is clear that the things outside the system being modelled are not being

modelled; that is, a system representation includes sufficiently good representations of the hazards,

objects of interest, and consequences, as well as the interaction between them, so that it can be

reasonably certain that there is an appropriate understanding of the system and all the possible

scenarios that might arise in the case of some hazard event.

1
 Note that our commitment to the quantitative over the qualitative should not be read as a dismissal of

qualitative stress tests; far from it, for qualitative stress tests may serve their purpose very effectively. It is just

that a choice had to be made, and the choice fell naturally on quantification, as mathematics is the common

mode of discourse in engineering risk research.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

11
© The INFRARISK Consortium

So, a system representation typically will include the natural environment (e.g. amount of rain,

amount of water in rivers), the physical infrastructure (e.g. the behaviour of a bridge when subjected

to high water levels), and human behaviour (e.g. traffic patterns when a bridge is no longer

functioning). Also, as it is necessary to model the system over time it will often be necessary to

specifically model the spatial and temporal dependencies between events and activities with the

investigated time period. An important example of spatially and temporally dependent events are

the so-called cascading events (see Chapter 8).

In WP4’s general risk assessment framework ‘risks’ are equated with outcome scenarios. All relevant

outcome scenarios are enumerated, by way of the system representation which was constructed in

the previous step, in the risk identification step. These outcome scenarios are then assigned

probabilities and consequences, again, by way of the system representation which was constructed

in the previous step, in the risk analysis step.

In WP6’s stress testing framework the ‘risk identification’ and ‘risk analysis’ steps equate with one

singular ‘construction the outcome probability distribution’ step. Outcome probability distributions

are the information carriers of our quantitative risk analyses, as for a given outcome metric (e.g.

costs of physical repairs to the network, delay times for network users, restoration durations for the

network, etc.) outcome probability distributions (1) enumerate all possible outcomes , and (2) given

a plausibility (i.e. probability) to each of these possible outcomes. Stated differently, outcome

probability distributions are (very important) risk assessment outputs. For an example of a risk

assessment output in a physical repair cost outcome metric, conditional on some hypothetical

adverse river discharge scenario, see Figure 3.3 in the next Chapter.

In the risk evaluation step the risk present in the outcome probability distribution, which was

constructed in the preceding risk analysis step is communicated to and verified with the

stakeholders. It is at this point in the general risk assessment process that stakeholders (i.e. decision

makers) will be most likely to indicate whether or not the risk analysis needs to be redone with more

detailed system representations, more sophisticated models and/or improved assumptions

In the risk treatment step involves the selection of the best way to modify the system which is being

analysed. The best way to modify the system may be comprised of one or more interventions. These

interventions can include physical changes to the infrastructure, alteration of the natural

environment, and/or activities to alter the human behaviour during or following a hazard event. The

selection of the best way to modify the system involves balancing of costs and effort of

implementation against the benefits derived, taking into consideration constraints such as legal,

regulatory, and other requirements such as social responsibility and the protection of the

environment.

WP4’s risk evaluation and (the cost benefit part of the) risk treatment steps are the subject of D6.3.

2.3.2 The General Stress Test Framework

As already stated in the previous section, in a quantitative/probabilistic analysis the outcome

probability distribution is the information carrier that tells us all we ever would want to know, as it is

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

12
© The INFRARISK Consortium

that in the outcome probability distribution all the possible outcomes are (1) enumerated, and (2)

given a plausibility (i.e. probability). Conditional outcome probability distributions are the

information carriers in stress tests, whereas unconditional, marginalized outcome probability

distributions are the information carriers in risk analyses.

2.3.2.1 Stress Test Outputs

A stress test output is a (range of) projected value(s) of some outcome metric under the assumption

that some stress scenario actually will occur with certainty. If there is only the one possible outcome,

then this outcome has a probability of 1.0. But if there is more than one projected outcome value,

then, in principle, a probability distribution may be assigned over these outcomes. The stress output

will then consist of, in probability theoretical terms, an outcome probability distribution which is

conditional on the proposed stress scenario; i.e. a conditional outcome distribution.

In a stress test we just construct the one outcome probability distribution for some given adverse

scenario S , say,

 ()
()()0

,| ASOp S
i

 (2.1)

where the ()S
i

O are the outcomes, for () ()SS
ni ,,1 K= and

()0
A is the action to keep the status

quo. Whereas in a risk analysis we first construct outcome probability distribution for all the possible

scenarios, be they adverse, neutral, or positive, say,

 ()
()()0,| ASOp ji jS (2.2)

where the ()jS
i

O are the outcomes, for
() ()jj SS

ni ,,1 K= , for scenarios
jS , where mj ,,1 K= , and

where S in (2.1) is a member of the set of possible scenarios { }mSS ,,1 K and
()0

A is the action to

keep the status quo. After which we weigh these conditional outcome probability distributions by

the probabilities of their corresponding scenarios, in order to obtain the marginalized probability

distribution:

 ()
()() () ()

()()∑
=

=
m

j

jiji
ASOpSpAOp

jSjS

1

00 ,|| (2.3)

For a simple example of a stress test output (2.1), see Figure 3.3, where a system of five bridges is

stress tested, in terms of the physical repair costs, for some stress scenario which leads to an

increase of flow (m
3
/s) around these bridges.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

13
© The INFRARISK Consortium

2.3.2.2 Selecting Stress (Test) Scenarios

Stress tests can involve estimating the impact of a change in a single risk factor (a sensitivity test), or

the effect of a simultaneous move in a group of risk factors (a scenario analysis). Stress scenarios can

be based on historical scenarios, employing shocks that occurred in the past, or can be based on

hypothetical/synthetic scenarios, constructed to take account of plausible changes in circumstances

that have no historical precedent. Two other techniques that are often included under the rubric of

stress testing are extreme value theory, which applies statistical analysis to the tails of return

distributions, and the maximum loss approach, which estimates the combination of factors that

would cause the largest loss to the system under consideration (Blaschke et al., 2001).

The definition of an appropriate stress scenarios is a difficult task in that requires multiple persons

bringing together their opinions and feelings into multiple coherent questions to be answered. The

process of creating different stress scenarios is arguably the most difficult and controversial aspect

of stress testing, as an ideal stress test needs to be relevant to the system under consideration. This

requirement can impose significant resource costs, and involve a great deal of expertise and

judgment by the parties involved (Blaschke et al., 2001).

So, risk managers need to represent their stress scenarios as plausible, being clear as to the extent of

“invention” being applied, and to have a forthright discussion of the boundaries of conditions and

events that should be anticipated. The aim is for stakeholders to be active participants and to

consider risk to the system under consideration when making strategic and tactical decisions. The

(implied) stress level should not be so severe as to merit a dismissal as being too alarmist. But

neither should it be so mild as to desensitize the stakeholders to the potential risks (IAA, 2013).

Formulating a convincing and believable narrative or story may, on the one hand, be crucial to

achieve buy-in from stakeholders into the stress scenarios, and, on the other hand, be helpful for the

risk managers, as the formulation of a stress scenario becomes equivalent to the telling of a story

(IAA, 2013):

“And when it comes to influencing decisions and prompting action, the power of a ‘story’

should never be underestimated. A ‘plausible model or reality’ is exactly that, a ‘story’ that

connects a variety of visible and readily understandable inputs to more or less extreme

outcomes.” (Coherent Stress Testing, Ricardo Rebonato)

Structured brainstorming sessions, such as conducted in general morphological analyses (Ritchey,

1998) as well as in WP4 of the InfraRisk project, may be used to elicit this expert knowledge based

narrative from the relevant experts and stakeholders. One possible instrument by which to structure

a brainstorming session is the use of Delphi panels (see Appendix B) and Similarity Judgment. Both

methodologies are used in WP8 of the InfraRisk project. Such a combined approach has been used

for example to prioritize objects within the National Alert System in the Netherlands to prioritise the

most vulnerable locations related to terrorism (Prak, 2009).

It is also often useful to scan large databases, such as the one proposed in (Gavin and Martinovic,

2014), to have an idea as to what scenarios could be of particular interest. Descriptions of what can

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

14
© The INFRARISK Consortium

be found in such databases in the case of infrastructure related risk due to natural hazards can be

found in (Cheng and Taalab, 2014). Also, when using the extreme value theory approach, particular

thought needs to be given here to the levels at which the stress tests need to be conducted; e.g. do

you want to have a cumulative risk due to both floods and earthquakes below a threshold value, or

do you want to have the risk due to floods below one threshold value, and the risk due to

earthquakes below another threshold value, or both.

2.3.2.3 Risk Acceptability and the Choosing Amongst Alternatives

At this point it is worthwhile to explain, at least generally, what an acceptable level of risk is, beyond

that it is one where the infrastructure manager is not required to execute interventions to reduce

risk. The level of risk that is considered acceptable will typically varies from situation to situation, as

risk acceptability is inversely related to both the number of cost efficient alternative courses of

action that may reduce the risk and the extent of that cost efficiency; that is, the (un)acceptability of

some current risk is something that has to be demonstrated by all parties involved.

If there are no feasible (i.e. cost-efficient) alternatives to protect us from some risk, like for example

a meteorite strike that wipes out all life on the Northern Hemisphere, then we simply will accept

that risk, even if its consequences are off the scale. But if we learn, for example, that the Fukushima

Daiichi core breach could have been prevented with either some relatively minor investments in

tsunami levees, or some small engineering adjustments in which the coolant power supply was

moved to the roof of the nuclear plant, or the instalment of some simple emergency protocols, then

it will be felt by most that unacceptable risks were taken by the Fukushima Daiichi stakeholders.

So, risk acceptability depends on whether there are possibilities to reduce the risk and how costly

these are. This concept is sometimes referred to as the economically optimal level of risk, and was

first proposed in the safety science domain by (van Danzig, 1956).

In addition to the method of optimizing the economical level of risk, others, such as (Jonkman et al.,

2006), have proposed to determine acceptable risk levels by comparing the actual risk with norms

on individual and societal risk, where individual risk indicates the distribution of the risk over the

potentially affected individuals, and societal risk describes the relationship between frequency and

the number of people suffering from a specified level of harm. The acceptable level of risk is

considered to be one that is below that described in norms.

In D6.3 there is presented an decision making protocol which takes its cue from the economics (i.e.

cost-benefit) based risk approach, where risks are implicitly deemed unacceptable if the costs for a

safer system are less than the estimated benefit in terms of risk reduction. If we let risk be some

function of both consequences, { }nxx ,,1 K=x , and the probabilities of these consequences,

{ }npp ,,1 K=p ; that is,

 Risk = ()px,f (2.4)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

15
© The INFRARISK Consortium

Then it is argued in D6.3 that the risk function ()px,f may interpreted as a position measure on the

corresponding outcome probability distribution:

()













=

.,

,,

,,

22

11

nn xp

xp

xp

p
M

x (2.5)

where the { }nxx ,,1 K=x are mapped on the x-axis and the { }npp ,,1 K=p are mapped on the y-

axis.

For example, if we take as our risk function ()px,f the expectation value:

 () ()XEpxf
n

i

ii ==∑
=1

,px (2.6)

then we have that our risk index is a measure of the position of the most-likely scenario (of losses).

Now, given the iniquitousness of (2.6) as a definition for risk, there must be some merit in taking the

most-likely loss-scenario as our risk measure. An alternative, more cautious position is taken by the

return period methodology, which takes as its risk index the measure the position of an unlikely (to

be on the safe side of things) worst-case scenario:

() () ()XstdkXEf +=px, (2.7)

where

 () ()
2

11

2

1

, 







−== ∑∑∑

===

n

i

ii

n

i

ii

n

i

ii pxpxXstdpxXE (2.8)

and k is the sigma-level that will give us the desired upper percentile value. Now, in D6.3 it is

proposed that the position measure that takes into account the worst, most-likely, and best case

scenarios:

 () () () ()
3

,
XUBXEXLB

f
++

=px (2.9)

is the most all-round risk measure. Now, there are as of yet no guiding mathematical principles by

which to choose between the alternative risk indices (2.6), (2.7), and (2.9). We have only general

common sense principles, like those expounded in D6.3, to guide us when it comes to this decision

theoretical degree of freedom (van Erp et al., 2016a).

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

16
© The INFRARISK Consortium

Now, in practice we will have that a stress test is done order to check if alternative courses of actions

are to be taken. More specifically, an infrastructure stress test is an analysis conducted under

unfavorable scenarios which is designed to determine whether there are inacceptable infrastructure

related risks. These tests are meant to detect system objects that if “strengthened” through the

execution of (hard engineering and/or soft policy) preventive interventions will greatly decrease the

infrastructure related risk.

So the strengthening of one or more infrastructural system objects are the alternative actions which

are open to the road manager, relative to a status quo where he only performs regular maintenance.

Moreover, the road manager will have some budget constraint under which he has to decide

whether or not to strengthen additional infrastructural objects or not. If we enumerate all the

possible actions that a road manager might take as the set

{ }mAAA ,,, 21 K . (2.10)

Then we have that each action
kA will map to a specific outcome probability distribution:

 ()













=

.,

,,

,,

|
22

11

kk nn

k

xp

xp

xp

Ap
M

x (2.11)

where
kn is the number of possible outcomes under the kth action

kA . Now, we may compute for

each of these outcome probability distributions (2.11), depending on our risk appetite, any of the

risk indices (2.6), (2.7), and (2.9). For a given choice of risk index, the road manager then chooses

that decision

 { }mk AAAA ,,, 21 K∈ (2.12)

which has the lowest risk (index) value of its corresponding outcome probability distribution (2.11).

So, in this straightforward decision theoretical approach (Jaynes, 2003), no threshold values are

needed. All that needs to be done is:

1. An enumeration of all the possible action (2.10),

2. The construction of the corresponding outcome probability distributions (2.11),

3. A commitment to one of the risk indices either (2.6), (2.7), or (2.9),

4. A minimization of the chosen risk index over the set of possible actions (2.10).

For an actual demonstration of this approach, see D6.3.

So, if we make explicit the fact that the decision of whether or not to accept a certain risk must be

against the backdrop of some set of alternative actions, we may bypass the threshold definition

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

17
© The INFRARISK Consortium

problem. Moreover, by doing so, we have at our disposal an approach to risk-based decision making

for critical infrastructures.

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

3.0 QUANTIFYING THE EFFECT OF STRESS SCENARIOS IN TRANSPORT SYSTEMS

We provide here a simple example of how

bridges. This chapter acts as a step

in Chapters 4, 5, and 6.

3.1 A System Description

Let us consider the following road network with 5 components (bridges

3.1.

We assume that bridges 1, 2, and 3 are bridges of type I and bridges 4 and 5 of type II. Each type of

bridge has its own characteristics and, as a consequence, will behave differently under different

scour conditions; that is, bridges of type I are considered to be more resistant to scour than those of

type II.

The scour load for a given bridge is considered to be some limit state function of some discharge

value Q measured in the vicinity of the bri

limit state function forQ , we may determine for (increasing) discharge values

scour load probability distribution (Gehl and D’Ayala, 2015;

load probability distributions are connected to some damage state model by way of loading

thresholds, then we may compute (on the assumptions that our limit state function and damage

state model are valid) for a given discharge value

either one of the damage states.

 Stress Test Framework for Systems

EFFECT OF STRESS SCENARIOS IN TRANSPORT SYSTEMS

a simple example of how a stress test may be evaluated for a simple system of

as a step-by step illustration of the more technical material that will follow

Let us consider the following road network with 5 components (bridges over a river), Fig

We assume that bridges 1, 2, and 3 are bridges of type I and bridges 4 and 5 of type II. Each type of

bridge has its own characteristics and, as a consequence, will behave differently under different

at is, bridges of type I are considered to be more resistant to scour than those of

The scour load for a given bridge is considered to be some limit state function of some discharge

measured in the vicinity of the bridge (e.g. upstream, downstream, etc.). By specifying a

, we may determine for (increasing) discharge values Q

scour load probability distribution (Gehl and D’Ayala, 2015; D’Ayala and Gehl, 2015). If these scour

load probability distributions are connected to some damage state model by way of loading

thresholds, then we may compute (on the assumptions that our limit state function and damage

n discharge value jQ a corresponding probability of a bridge being in

either one of the damage states.

Figure 3.1: Bridge System

Stress Test Framework for Systems

18

EFFECT OF STRESS SCENARIOS IN TRANSPORT SYSTEMS

luated for a simple system of

technical material that will follow

over a river), Figure

We assume that bridges 1, 2, and 3 are bridges of type I and bridges 4 and 5 of type II. Each type of

bridge has its own characteristics and, as a consequence, will behave differently under different

at is, bridges of type I are considered to be more resistant to scour than those of

The scour load for a given bridge is considered to be some limit state function of some discharge

dge (e.g. upstream, downstream, etc.). By specifying a

jQ thecorresponding

D’Ayala and Gehl, 2015). If these scour

load probability distributions are connected to some damage state model by way of loading

thresholds, then we may compute (on the assumptions that our limit state function and damage

a corresponding probability of a bridge being in

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

19
© The INFRARISK Consortium

So, if there are ()1+n damage states, of which the zeroth state is the “undamaged”-state,

ni ,,1,0 K= , and if we have m discharge values jQ , for mj ,,1 K= , then we may determine, by

way of a limit state function the probability ijp of being in damage state i given the discharge value

jQ . If we do not have direct access to the probabilities ijp , then, alternatively, we may also sample

the limit state function, in order find the number of realisations of bridge damage ijZ in ijN

independent samples (Gehl and D’Ayala, 2015; D’Ayala and Gehl, 2015). Note that this later

approach will introduce additional sampling uncertainty, as we determine ijp by way of a sampling

approach frequency and not analytically. But this additional sampling uncertainty may be removes if

we let ∞→ijN .

3.2 The Probability Model

As the basis for our failure probability model we may take probit functions for each of the 3,2,1=i

actual damage states:

 () ()








Φ=

β

α
βα i

i

Q
QiP

ln
,,| , for 3,2,1=i , (3.1)

where the parameters 1α , 2α , 3α , and β are the so-called fragility parameters. The probability of

being in (the un)damage state 0=i then is

() ()








Φ−==

β

α
βαπ 1

1

ln
1,,|0

Q
Qi ; (3.2a)

the probability of being in damage state 1=i is

 () () ()








Φ−








Φ==

β

α

β

α
βααπ 21

21

lnln
,,,|1

QQ
Qi ; (3.2b)

the probability of being in damage state 2=i is

 () () ()








Φ−








Φ==

β

α

β

α
βααπ 32

32

lnln
,,,|2

QQ
Qi ; (3.2c)

the probability of being in damage state 3=i is

() ()








Φ==

β

α
βαπ 3

3

ln
,,|3

Q
Qi . (3.2d)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

20
© The INFRARISK Consortium

In order to evaluate the probabilities of being in one of the damage states for a given river discharge

Q , we need to determine the fragility parameters 1α , 2α , 3α , and β .

3.3 Estimating Fragility Parameters

3.3.1 Fragility Parameter Estimation for Type I Bridges

Let us assume that for the bridge of type I we have 10 discharge values jQ , for 10,,1 K=j . Let us

also assume that we sample the limit state function for each discharge value and each damage state,

starting from damage state 1=i , 100=N times in order to determine each time the number of

realizations ijZ that are in the pertinent damage states 1=i , 2=i , and 3=i , respectively. In

Table 3.1 we give a possible realization of such a sampling exercise.

jQ jZ1 jZ2 jZ3

j = 1 10 0 0 0

j =2 39 10 0 0

j =3 78 30 3 0

j =4 156 60 10 0

j =5 312 100 30 3

j =6 625 100 60 10

j =7 1250 100 100 30

j =8 2500 100 100 60

j =9 5000 100 100 100

j =10 10000 100 100 100

Table 3.1: Type I Bridge (discharge values and associated number of damage state realisations)

Based on this data, we can specify the fragility-parameter likelihood model (Shinozuka et al., 2003):

()
() ()

∏∏
= =

−



















Φ−








Φ=

3

1

10

1

321

ln
1

ln
,,,

i j

ZN

ij

Z

ij

ijij
QQ

L
β

α

β

α
βααα , (3.3)

where Φ is the symbol of the cumulative standard normal distribution. If we assign the following

non-informative prior to the fragility-parameters (Jaynes, 1968)

 ()
βααα

βααα
321

321

1
,,, ∝p , (3.4)

Then we may combine (3.1) and (3.2) into the posterior probability distribution (Jaynes, 2003)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

21
© The INFRARISK Consortium

 ()
() ()

∏∏
= =

−



















Φ−








Φ∝

3

1

10

1321

321

ln
1

ln1
|,,,

i j

ZN

ij

Z

ij

ijij
QQ

Dp
β

α

β

α

βααα
βααα (3.5)

where the data D consists of the set of inputted flow discharges { }
jQ and the set of observed

number of failure realisations { }
ijZ in 100=N trials, for 3,2,1=i and 10,,1 K=j , as shown in

Table 3.1.

By way of the Nested Sampling algorithm, we may obtain a univariate representation for the fragility

parameter probability distribution (3.5) which allows us to evaluate the mean and standard

deviation vectors, and the correlation-matrices of the fragility parameters (see Chapters 4, 5, and 6):

 99.107
1

=αµ , 62.421
2

=αµ , 181651
3

.µ
α

= , 7008.0=bµ , (3.6a)

 81.5
1

=ασ , 54.21
2

=ασ , 1166
3

.
α

=σ , 0273.0=bσ , (3.6b)

And



















−

−

−−

=

104.005.003.0

04.0110.001.0

05.010.0102.0

03.001.002.01

corr . (3.6c)

From the correlation matrix (3.6c) it can be seen that the fragility parameters values are only

somewhat correlated with each other, where we note that uncorrelatedness does not imply

independence, as the correlation measure is a linear dependence measure; i.e. there are all kinds of

non-linear depdencies conceivable which have a correlation measure of zero.

As the probabability distribution (3.5) cannot be easily factorized in the product of four independent

probability dsitributions, one will need to use the univariate Nested Sampling representation of

(3.5), say,

 ()I Type,|,,, 1321 DapNS βαα , (3.7)

where 1D is as in Table 1 and (3.7) itself is a collection of probability weighted fragility parameter

vectors, in order to take into account the fragility parameter uncertainty, (see Chapter 6).

3.3.2 Fragility Parameter Estimation for Type II Bridges

In out hypothetical problem, we have that the type II are more vulnerable to scour. For the bridge of

type II, we use the same 10 discharge values jQ that were used in Table 1, where we sample from

the same limit state function for each discharge value and each damage state, in order to determine

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

22
© The INFRARISK Consortium

each time the number of realizations ijZ that are in the pertinent damage states 1=i , 2=i , and

3=i , respectively. In Table 3.2 we give a possible realization of such a sampling exercise. Note that

the difference in the number of ijZ realizations, relative to Table 3.1, are due to the fact that the

damage state model for a type II bridge will set all the damage state thresholds lower, as these types

of bridges are more vulnerable to scour loading.

jQ jZ1 jZ2 jZ3

j = 1 10 10 0 0

j =2 39 30 3 0

j =3 78 60 10 0

j =4 156 100 30 3

j =5 312 100 60 10

j =6 625 100 100 30

j =7 1250 100 100 60

j =8 2500 100 100 100

j =9 5000 100 100 100

j =10 10000 100 100 100

Table 3.2: Type II Bridge (discharge values and associated number of damage state realisations)

By way of the Nested Sampling algorithm, we may obtain a univariate representation for the fragility

parameter probability distribution (3.5) which allows us to evaluate the mean and standard

deviation vectors, and the correlation-matrices of the fragility parameters (see Chapter 6):

 73.48
1

=αµ , 01.210
2

=αµ , 58861
3

.µ
α

= , 7626.0=bµ , (3.8a)

 88.2
1

=ασ , 80.11
2

=ασ , 9144
3

.
α

=σ , 0323.0=bσ , (3.8b)

And



















−

−−

−−

−−−

=

104.005.005.0

04.0106.004.0

05.006.0103.0

05.004.003.01

corr . (3.8c)

Again, from the correlation matrix (3.8c) it can be seen that the fragility parameters values are only

somewhat correlated with each other.

As the probabability distribution (3.5) cannot be easily factorized in the product of four independent

probability dsitributions, one will need to use the univariate Nested Sampling representation of

(3.5), say,

 ()II Type,|,,, 2321 DapNS βαα , (3.9)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

23
© The INFRARISK Consortium

where 2D is as in Table 3.2 and (3.9) itself is a collection of probability weighted fragility parameter

vectors, in order to take into account the fragility parameter uncertainty, (see Chapter 6).

3.4 Connecting Fragility Parameter Estimates to Damage State Probabilities

Using the Nested Sampling proxies (3.7) and (3.9), we may take into account, by way of the Law of

Total Probability and the fragility parameter uncertainty in (3.2):

() ()
()

() ()
()
∑

∑

=

=

βαα

βαα

βααβαααπ

βααππ

,,,

1321321

,,,

13211

321

321

I Type,|,,,,,,,|

I Type,,|,,,,I Type,,|

a

NS

a

DapQi

DQaiDQi

 (3.10a)

and, likewise,

() ()
()

() ()
()
∑

∑

=

=

βαα

βαα

βααβαααπ

βααππ

,,,

2321321

,,,

23212

321

321

II Type,|,,,,,,,|

II Type,,|,,,,II Type,,|

a

NS

a

DapQi

DQaiDQi

 (3.10b)

3.5 Computing a Damage State Probability Map for a Stress Scenario

So, going back to Figure 3.1, we now will proceed to evaluate some stress scenario that will lead to

elevated flood discharges throughout the river; that is, elevated flood discharges are predicted in the

vicinity of the bridge, Figure 3.2. The fragility parameter weighted damage state probabilities for the

type I bridges are given as, Figure 3.2 and (3.10a),

() []0446.05522.03885.00147.0I Type,,500| 11 == Dqiπ , (3.11a)

() []0322.05056.04410.00212.0I Type,,450| 12 == Dqiπ , (3.11b)

() []1109.06547.02304.00040.0I Type,,700| 13 == Dqiπ , (3.11c)

and the fragility parameter weighted damage state probabilities for the type II bridges are given as,

Figure 3.2 and (3.10b),

() []0840.05966.03106.00089.0II Type,,300| 24 == Dqiπ , (3.11d)

() []2789.06176.01027.00008.0II Type,,550| 25 == Dqiπ , (3.11e)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

24
© The INFRARISK Consortium

where the damage state probabilities are ordered as 3,2,1,0=i ; that is, for the stress scenario that

gives us river discharge values as in Figure 3.2, all the bridges have the largest probability to be in

damage state 2. The resulting probability map is given in Table 3.3.

 i = 0 i = 1 i = 2 i = 3

Bridge 1 0.0147 0.3885 0.5522 0.0446

Bridge 2 0.0212 0.4410 0.5056 0.0322

Bridge 3 0.0040 0.2304 0.6547 0.1109

Bridge 4 0.0089 0.3106 0.5966 0.0840

Bridge 5 0.0008 0.1027 0.6176 0.2789

Table 3.3: Damage State Probability Map of Bridge System under Stress Scenario in Figure 3.2

3.6 Assigning Probabilities to Damage State Vectors

With the parameter weighted damage state probabilities in (3.11) we may assign probabilities to all

the 102445 = possible damage state vectors of the bridge system in Figure 3.1. For example, the

probability of the damage state where the bridges 1, 2, and 3 are in damage state 2=i and the

bridges 4 and 5 are in damage state 3=i , that is,

() ()332221 =x ,

Figure 3.2: River Discharge Stress Scenario

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

25
© The INFRARISK Consortium

is found by taking the product of the probabilities, Table 3.3,

()() ()()()()()

.0043.0

2789.00840.06547.05056.05522.0scenario stress|1

=

=xp

 (3.12a)

The most likely damage state vector is the system state where all the bridges are in the damage

state 2=i ,

() ()222222 =x ,

which has a probability of, Table 3.3,

()() ()()()()()

.0673.0

6176.05966.06547.05056.05522.0scenario stress|2

=

=xp

 (3.12b)

The least likely damage state vector is the system state is the system state where all the bridges are

in the undamaged state 0=i ,

() ()000003 =x ,

which has a probability of, Table 3.3,

()() ()()()()()

.1088.8

0008.00089.00040.00212.00147.0scenario stress|

12

3

−×=

=xp

 (3.12c)

Note that given the chosen stress scenario, the system state probabilities are computed as the

product of independent probability components; that is, given the values of the bridge relevant river

discharge values Nqqq ,,, 21 K , Figure 3.2, the probability of a damage state vector consisting of N

components is the product of the probabilities of the N components in that state vector (3.12).

This independence of the damage state probabilities of the separate components will greatly

facilitate the computational effort needed to come to a set of representative samples, by which we

may evaluate the consequences of the stress scenario in Figure 3.2, as this independence allows us

to bypass the need for Nested Sampling and revert to traditional MC sampling, where the 5

probability distributions (3.11) are sampled in sequentially in order to come to representative (i.e.

having the greatest multiplicity) damage state vectors .

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

26
© The INFRARISK Consortium

3.7 Assigning Direct Repair Costs to Damage State Vectors

Both type of bridges will have their own associated repair costs once they reach one of the damage

states 1≥i , Table 3.4.

 i = 0 i = 1 i = 2 i = 3

Bridge 1 0 10.000 50.000 1.000.000

Bridge 2 0 10.000 50.000 1.000.000

Bridge 3 0 10.000 50.000 1.000.000

Bridge 4 0 6.000 24.000 480.000

Bridge 5 0 6.000 24.000 480.000

Table 3.4: Damage State Repair Cost Map of Bridge System under Stress Scenario in Figure 3.2

With the damage state repair costs we may assign a repair cost to all the 102445 = possible damage

state vectors of the bridge system in Figure 3.1. For example, the repair cost of the damage state

where the bridges 1, 2, and 3 are in damage state 2=i and the bridges 4 and 5 are in damage state

3=i , that is,

() ()332221 =x ,

is found by taking the sum of the repair costs, Table 3.4,

()()

.000.210.1

000.480000.480000.50000.50000.50scenario stress|
1

=

++++=xc

 (3.13a)

The most likely damage state vector is the system state where all the bridges are in the damage

state 2=i ,

() ()222222 =x ,

which has a probability of, Table 3.3,

()()

.000.198

000.24000.24000.50000.50000.50scenario stress|
2

=

++++=xc

 (3.13b)

The least likely damage state vector is the system state is the system state where all the bridges are

in the undamaged state 0=i ,

() ()000003 =x ,

which has a probability of, Table 3.3,

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

27
© The INFRARISK Consortium

()()

.0

00000scenario stress|
3

=

++++=xc

 (3.13c)

3.8 Evaluating the Repair Cost Probability Distribution

The mean and standard deviations of the repair costs of the separate bridges are given in Table 3.5,

as computed by way of the values in Tables 3.3 and 3.4.

Bridge 1 2 3 4 5

mean repair cost 760951 =µ 618902 =µ 1459393 =µ 565024 =µ 1493105 =µ

std. repair cost 2005701 =σ 1722702 =σ 3021003 =σ 1285104 =σ 2057305 =σ

Table 3.5: Mean and Standard Deviation of Repair Costs of Respective Bridges in Figure 3.2

The mean and standard deviation of the repair cost of all the bridges then is given as, Table 3.5,

 489740
5

1

==∑
=i

itotal µµ , 469050
5

1

2 == ∑
=i

itotal σσ . (3.14)

For comparison, if we take a mere 100 MC samples, then we find the sample estimates

 515200=totalX , 462340=totalS ; (3.15a)

if we take 1000 MC samples, then we find the sample estimates

 831744=totalX , 463410=totalS ; (3.15b)

and if we take 10.000 MC samples, then we find the sample estimates

 863804=totalX , 670504=totalS . (3.15c)

It can be seen that the mean and standard deviation of the MC sampled total repair costs, (3.15),

quickly converge to the true population values (3.14). The total repair cost histogram of 1.000.000

MC samples is given as in Figure 3.3. The frequency distribution in Figure 3.3 has a mean and

standard deviation of

 889604=totalX , 468900=totalS . (3.16)

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

Figure 3.3: Frequency Distribution of Total Rep

 Stress Test Framework for Systems

Frequency Distribution of Total Repair Costs under the Stress Scenario in Figure 3.2

Stress Test Framework for Systems

28

air Costs under the Stress Scenario in Figure 3.2

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

29
© The INFRARISK Consortium

4.0 UNIVARIATE REPRESENTATIONS OF MULTIVARIATE PROBABILITY DISTRIBUTIONS

We now discus how to represent highly multivariate probability distribution functions on the two

dimensional plane (Skilling, 2004), as this will lay some of the groundwork for the upcoming

discussion of the Probability Sort and Nested Sampling algorithms. The latter algorithm was

instrumental in the evaluation of the case study in Chapter 3, whereas the former algorithm will

allow one to model cascading effects stress scenarios.

4.1 Univariate Representations

Say we wish to numerically evaluate the integral of the bivariate normal distribution ()Σ,µMN

where

 







=

0

0
µ , and 









−

−
=Σ

96.137.1

37.196.1
, (4.1a)

or, equivalently,

 ()
() ()





++−

−
= 22

2

4.1
2

1
exp

2

7.01
, yxyxyxp

π
, (4.1b)

where 5,5 ≤≤− yx , Figure 4.1.

Then the total volume under the curve ()yxp , in Figure 4.1 is given by the integral

() () 9993.04.1

2

1
exp

2

7.01
5

5

5

5

22

2

=







++−

−
∫ ∫
− −

dydxyxyx
π

. (4.2)

Figure 4.1: Graph of p(x, y)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

30
© The INFRARISK Consortium

We may evaluate the integral (4.2) through brute force. We partition the yx, -plane in little squares

with area dydx , then define the centre of these areas as ()
kj

yx ~,~
, for 20,,1K=j , 20,,1K=k , and

compute the strips of volume jk
V as

 () dydxyxpV kjjk
~,~= . (4.3)

In Figure 4.2 we give all the volume elements jk
V together:

The total volume under the curve ()yxp , may be approximated as

 9994.0
20

1

20

1

==∑∑
= =j k

jk
Vvolume . (4.4)

Now, we may map these 3-dimensional volume elements jk
V to corresponding 2-dimensional area

elements
i

A . This is easily done by introducing the following notation

dydxdw= , () ()[] ()
kjii yxpyxpwp ~,~~,~ == , (4.5)

where index i is a function of the indices j and k :

() kji +−≡ 201 (4.6)

and 400,,1 K=i . Using (4.5), we may rewrite (4.3) as

 () ()[]dwyxpdwwpA
iii

~,~== . (4.7)

In Figure 4.3 we give all the 400 are elements
i

A together:

Figure 4.2: Volume Elements of p(x, y)

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

Since (4.7) is equivalent to (4.3), we have that the mapping of the 3

jk
V to their corresponding 2-dimensional area elements

that is,

 VAarea
j k

jk

i

i
== ∑∑∑

= ==

20

1

20

1

400

1

We now may, trivially, rearrange the elements

Figure 4.4.

Note that the horizontal axis of Figure

collection of rectangular area elements ordered in one of many possible configurations. Now all

these rectangular elements have a base of

elements we might view Figure

()wg , where 1000 ≤≤ w , as displayed in Figure

Figure 4.3: Area Elements of

Figure 4.4: Ordered Area Elements of

 Stress Test Framework for Systems

3), we have that the mapping of the 3-dimensional volume elements

dimensional area elements
i

A has not led to any loss of information;

volume= .

We now may, trivially, rearrange the elements
i

A in Figure 4.3 in descending order, so we obtain

Note that the horizontal axis of Figure 4.4 is non-dimensional. This is because we are looking at a

ection of rectangular area elements ordered in one of many possible configurations. Now all

these rectangular elements have a base of 25.0== dydxdw , being that there are 400 area

elements we might view Figure 4.4 as a representation of some monotonic descending function

, as displayed in Figure 4.5.

Area Elements of p(x, y)

Ordered Area Elements of p(x, y)

Stress Test Framework for Systems

31

dimensional volume elements

has not led to any loss of information;

 (4.8)

3 in descending order, so we obtain

dimensional. This is because we are looking at a

ection of rectangular area elements ordered in one of many possible configurations. Now all

, being that there are 400 area

nic descending function

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

What we have accomplished is that we have mapped 3

of the bivariate probability distribution

4.3), after which we have rearranged these area elements in descending order, (Figure

get a monotonic descending ‘function’

the pertinent probability density information is retained, as every point on Figure

corresponds with a ()yx, -coordinate.

thus reduced to its corresponding monotonic descending univariate representation

2004), where it is understood that every point on the univariate

in the multivariate x -domain.

4.2 Retention of Pertinent Probability

If we have some function f which

probability distribution (4.1), then the

(4.3)-(4.8),

()[]{ } ([

[

[{

([

,

∫

∑

∑∑

∫∫

=

=

≈

=

wf

f

xfyxfE

i

j k

q

Figure 4.5: Function g(w); Ordered Univariate Rep

 Stress Test Framework for Systems

What we have accomplished is that we have mapped 3-dimensional volume elements, (Figure

of the bivariate probability distribution p , (Figure 4.1), to 2-dimensional area elements, (Figure

3), after which we have rearranged these area elements in descending order, (Figure

get a monotonic descending ‘function’ g , (Figure 4.5), and in going from Figure

the pertinent probability density information is retained, as every point on Figure

coordinate. Any k-variate function probability distribution

thus reduced to its corresponding monotonic descending univariate representation

, where it is understood that every point on the univariate w-axis corresponds with some

robability Density Information

which takes as its arguments x and y , which have

.1), then the q
th

 order moment of the function f may be evaluated as,

)] ()

()[]

()[]}

)] () ,

~,~

~,~

,,

dwwgw

Ayx

Vyxf

dydxyxpyx

q

i

q

i

jk

q

kj

q

); Ordered Univariate Representation of p(x, y)

Stress Test Framework for Systems

32

dimensional volume elements, (Figure 4.2),

dimensional area elements, (Figure

3), after which we have rearranged these area elements in descending order, (Figure 4.4), so as to

going from Figure 4.1 to Figure 4.5 all

the pertinent probability density information is retained, as every point on Figure 4.5’s w-axis

variate function probability distribution ()xp may be

thus reduced to its corresponding monotonic descending univariate representation ()wg (Skilling,

axis corresponds with some point

, which have been assigned the

may be evaluated as,

 (4.9)

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

where it is understood that every

coordinate.

Now, if the function f takes as its inputs arguments that admit a probability distribution, then one

may map this uncertainty regarding the input arguments to an uncertainty regarding th

corresponding f values. For example,

 ()[]yxfEf ,=µ ,

whereas the standard deviation of

 ()[]{ }2
, yxfEf −=σ

So, by going from the standard multivariate probability distribution

univariate representation ()wg

former is retained in the latter.

4.3 Generating Representative

4.3.1 MC-Sampling

If we want to obtain a representative sample of

do this by simply Monte Carlo (MC)

sorted univariate representation

Figure 4.6: Cumulative Distribution Function (CDF) of

 Stress Test Framework for Systems

where it is understood that every w in (4.9) points to (i.e. is a placeholder for)

takes as its inputs arguments that admit a probability distribution, then one

may map this uncertainty regarding the input arguments to an uncertainty regarding th

values. For example, the expectation value f (i.e., 1=q) is given as (

whereas the standard deviation of f is given as (4.9)

()[]{ }2
, yxfE− .

y going from the standard multivariate probability distribution (yxp ,

) , Figure 4.5, all the pertinent probability density information

epresentative Samples

we want to obtain a representative sample of n realizations from (4.1), Figure

Monte Carlo (MC) sampling the cumulative distribution function of the

univariate representation ()wg in Figure 4.6 for n consecutive times.

Cumulative Distribution Function (CDF) of w

Stress Test Framework for Systems

33

in (4.9) points to (i.e. is a placeholder for) a specific ()yx, -

takes as its inputs arguments that admit a probability distribution, then one

may map this uncertainty regarding the input arguments to an uncertainty regarding the

) is given as (4.9)

 (4.10)

 (4.11)

) , Figure 4.1, to its

ity density information in the

Figure 4.1, then we may

function of the probability

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

34
© The INFRARISK Consortium

A MC sample is obtained as follows. Let u be random realisation from the unit uniform probability

distribution ()1,0U . Then, for a given u on the y-axis of Figure 4.6, we look up the corresponding

iw , 400,,2,1 K=i , value on the x-axis, where it is understood that this iw value is a placeholder

for the probability sorted coordinate ()
i

yx ~,~ . This coordinate ()
i

yx ~,~ is the representative MC-

sample we are looking for.

4.3.2. Staircase Sampling

Alternatively, if we want to control for sampling the same coordinate ()
i

yx ~,~ more than once, we

may construct the cumulant staircase (4.7):

()

,
1

1

∑

∑

=

=

+=

+=

k

i

i

k

i

ik

Anu

dwwgnuT

 (4.12)

for 400,,2,1 K=k , and where u is again some random realisation from the unit uniform

probability distribution ()1,0U . If the staircase
kT rises for the first time above either of the integer

values, 1, 2, 3, … , n , then record the value k and take aside the corresponding coordinate vector

()
k

yx ~,~ ; see (3.3). Also, in order to avoid a repeated sampling of the same coordinate, we let

()ii A
n

max

1
≤ . (4.13)

This will leave us with a representative Monte Carlo sample of ()yx, -coordinates (Sivia and Skilling,

2006). For example, if we set 35=n , then we may obtain from Figure 4.7 the staircase sampler

(4.12) which is displayed in Figure 4.7.

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

If we zoom in to 30,,2,1 K=k , then we may see the staircase sampler in action

fifteenth, twentieth sample points, which map respectively, to

()
5

~,~ yx , ()
11

~,~ yx , ()
19

~,~ yx , and

By way of the staircase sampler, we then obtain a set of

samples are plotted together with the contourplo

Figure 4.8: Staircase Sampler (Zoom

Figure

 Stress Test Framework for Systems

, then we may see the staircase sampler in action

fifteenth, twentieth sample points, which map respectively, to the probability sorted coordinates

()
29

~,~ yx , Figure 4.8.

By way of the staircase sampler, we then obtain a set of 35=n representative samples. These

samples are plotted together with the contourplot of (4.1), Figure 4.9.

Staircase Sampler (Zoom-in)

Figure 4.7: Staircase Sampler

Stress Test Framework for Systems

35

, then we may see the staircase sampler in action for the fifth, tenth,

the probability sorted coordinates

representative samples. These

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

The mean and covariance matrix esitmates of this representative sample compare favourable with

(3.1):

 







=








11.0

04.0

y

x
,

For a 100-by-100 partition of the

samples, we obtain Figure 4.10.

The mean and covariance matrix esitmates of (

respectively,

Figure 4.9: Contour Plot of (4.1) with 35 Representative Samples (20

Figure 4.10: Contour Plot of (4.1) with 879 Representative Samples (100

 Stress Test Framework for Systems

The mean and covariance matrix esitmates of this representative sample compare favourable with

and 








−

−
=

67.128.1

28.118.2
S .

partition of the ()yx, -domain in Figure 4.1 and a set of =n

The mean and covariance matrix esitmates of (4.1) of the representative samples in Figure

Contour Plot of (4.1) with 35 Representative Samples (20-by-20 grid)

Plot of (4.1) with 879 Representative Samples (100-by-100 grid)

Stress Test Framework for Systems

36

The mean and covariance matrix esitmates of this representative sample compare favourable with

879= representative

.1) of the representative samples in Figure 4.10 are,

20 grid)

100 grid)

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

 








−
=








01.0

02.0

y

x
,

For a 200-by-200 partition of the

samples, we obtain Figure 4.11.

The mean and covariance matrix esitmates of (4.1

respectively,

 








−

−
=








03.0

01.0

y

x
,

Figure 4.11: Contour Plot of (4.1) with 3529 Representative Samples (200

 Stress Test Framework for Systems

 and 








−

−
=

93.138.1

38.199.1
S .

200 partition of the ()yx, -domain in Figure 4.1 and a set of 3519=n

The mean and covariance matrix esitmates of (4.1) of the representative samples in Figure

 and 








−

−
=

87.132.1

32.196.1
S .

Contour Plot of (4.1) with 3529 Representative Samples (200-by-200 grid)

Stress Test Framework for Systems

37

3519 representative

) of the representative samples in Figure 4.11 are,

200 grid)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

38
© The INFRARISK Consortium

5.0 REPRESENTATIVE SAMPLES FROM SYSTEMS OF INDEPENDENT COMPONENTS

In this chapter we show how for systems of independent components/variables, the MC- or

staircase-sampling from the cumulative distribution function of probability sorted univariate

representation of the multivariate system state probability distribution may be short-circuited by a

simple MC-sampling from the cumulative distribution functions of the independent compenents

seperately. This observation will lead to the recommendation that for indenpedent

compenents/variables simple MC-sampling is to be used, as is also done in the case study presented

in Chapter 3.

5.1 Sampling from Probability Sorted Total System Representations

Say we wish to numerically evaluate the integral of the bivariate normal distribution ()Σ,µMN

where

 







=

0

0
µ , and 








=Σ

96.10

096.1
, (5.1a)

or, equivalently,

 ()
() ()

()







+−= 22

96.12

1
exp

96.12

1
, yxyxp

π
, (5.1b)

where 5,5 ≤≤− yx , Figure 5.1.

Then we may discretize (5.1) into a collection of volume elements jk
V (4.3), Figure 5.2.

Figure 5.1: Graph of p(x, y)

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

The volume elements in Figure

(4.7), Figure 5.3.

The elements
i

A in Figure 5.3 are then rearranged

Figure 5.2: Volume Elements of

Figure 5.3: Area Elements of

Figure 5.4: Ordered Area Elements of

 Stress Test Framework for Systems

in Figure 5.2 may be transformed to corresponding area elements

are then rearranged in descending order, Figure 5.

Volume Elements of p(x, y)

Area Elements of p(x, y)

Ordered Area Elements of p(x, y)

Stress Test Framework for Systems

39

to corresponding area elements
i

A (4.5)-

5.4.

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

Figure 5.4 is a representation of some

Now, if we want to obtain a representative sample of

may do this by MC-sampling the cumulative distribution fun

representation ()wg , Figure 5.6

By way of staircase sampling, as we wish to guard against a repeated sampling of the same

coordinate ()
i

yx ~,~ , we then obtain a set of

are plotted together with the contourplot of (

Figure 5.5: Function g(w); Ordered Univariate Representation of

Figure 5.6: Cumulative Distribution Function (CDF) of

 Stress Test Framework for Systems

s a representation of some monotonic descending function ()wg , Figure

, if we want to obtain a representative sample of n realizations from (5.1) in Figure

sampling the cumulative distribution function of the probability sorted univariate

6, or by way of a stair case sampler (4.12).

, as we wish to guard against a repeated sampling of the same

we then obtain a set of 50=n unique representative samples. These samples

are plotted together with the contourplot of (5.1), Figure 5.7.

); Ordered Univariate Representation of p(x, y)

Cumulative Distribution Function (CDF) of w

Stress Test Framework for Systems

40

Figure 5.5.

.1) in Figure 5.1, then we

probability sorted univariate

, as we wish to guard against a repeated sampling of the same

representative samples. These samples

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

The mean and covariance matrix esitmates of this representative sample compare favo

(5.1):

 






−
=








03.0

10.0

y

x
,

For a 100-by-100 partition of the

samples, we obtain Figure 5.8.

The mean and covariance matrix esitmates of (

respectively,

Figure 5.7: Contour Plot of (5.1) with 50 Representative Samples (20

Figure 5.8: Contour Plot of (5.1) with 1232 Representative Samples (100

 Stress Test Framework for Systems

The mean and covariance matrix esitmates of this representative sample compare favo

 and 








−

−
=

61.151.0

51.011.2
S .

partition of the ()yx, -domain in Figure 5.1 and a set of 1232=n

e mean and covariance matrix esitmates of (5.1) of the representative samples in Figure

Contour Plot of (5.1) with 50 Representative Samples (20-by-20 grid)

Contour Plot of (5.1) with 1232 Representative Samples (100-by-

Stress Test Framework for Systems

41

The mean and covariance matrix esitmates of this representative sample compare favourable with

1232 representative

.1) of the representative samples in Figure 5.8 are,

rid)

100 grid)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

42
© The INFRARISK Consortium

 








−
=








07.0

02.0

y

x
, and 









−

−
=

94.107.0

07.094.1
S .

5.2 MC-Sampling from Independent System Components

Taking a closer look at (5.1), we see that this bivariate probability distribution can be factored as a

product of two normal probability distributions ()2,σµN , each having a mean of 0=µ and a

variance of 96.12 =σ :

() () (),, ypxpyxp = (5.2)

where

 ()
() ()









−=

96.12
exp

96.12

1 2
x

xp
π

 (5.3)

and

()
() ()









−=

96.12
exp

96.12

1 2
y

yp
π

. (5.4)

In order to come to a MC sample from (5.1), we may make use of the factorization in (5.2), by first

taking a MC-sample from (5.3). The cdf of (5.3) is given as

 ()
() 

























+=








Φ=∫

∞− 96.12
erf1

2

1

96.1

xx
dvvp

x

, (5.5)

where the ()xerf function is part of the MATLAB library, Figure 5.9.

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

Let u be random realisation from the unit uniform probability distribution

 ()1,0~ Uu .

Then the x -value MC-realisation for the first factorization is given as as the solution of the equality,

(5.5) and (5.6),

()
xMC


























+

96.12
erf1

2

1

It follows from (5.7) that for (5.3) the

 () (2erf96.12 1= −xMC

where the inverse error function

are equal, apart from their variable labelling, we have that for a new realisation of (

the y -value MC-realisation

 () (erf96.12 1= −yMC

Let 1u and 2u be two separate realisation

be obtained as

 () ()[96.12, =yx MCMC

By way of this simple MC-sampling, we then

These samples are plotted together wit

Figure 5.9: Cumulative Distribution Function (CDF) of

 Stress Test Framework for Systems

be random realisation from the unit uniform probability distribution (1,0U

realisation for the first factorization is given as as the solution of the equality,

u=





.

.3) the x -value MC-realisation can be given analytically as

)12 −u .

where the inverse error function ()x1erf −
 is part of the MATLAB library. Likewise, as (

from their variable labelling, we have that for a new realisation of (

()12 −u .

be two separate realisations from (5.6), then a single MC-realisation from (

) () () ()]12erf96.12,12erf 2

1

1

1 −− −− uu .

sampling, we then may obtain a set of 50=n representative samples.

These samples are plotted together with the contourplot of (5.1), Figure 5.10.

Cumulative Distribution Function (CDF) of x

Stress Test Framework for Systems

43

)1 :

 (5.6)

realisation for the first factorization is given as as the solution of the equality,

 (5.7)

realisation can be given analytically as

 (5.8)

Likewise, as (5.2) and (5.3)

from their variable labelling, we have that for a new realisation of (5.6) we obtain

 (5.9)

realisation from (5.1) may

 (5.10)

representative samples.

INFRARISK

Deliverable D6.2

© The INFRARISK Consortium

The mean and covariance matrix esitmates of this representative sample

 








−
=








26.0

06.0

y

x
,

Now, if we sample a set of 1232=n

The mean and covariance matrix esitmates of (

respectively,

Figure 5.11: Contour Plot of (5.1) with 1232 Representative Samples

Figure 5.10: Contour Plot of (5.1) with 50 Representative Samples

 Stress Test Framework for Systems

The mean and covariance matrix esitmates of this representative sample are given as

 and 








−

−
=

65.139.0

39.084.2
S .

1232 representative MC-realisations, we obtain Figure

The mean and covariance matrix esitmates of (5.1) of the representative samples in Figure

Contour Plot of (5.1) with 1232 Representative Samples

Contour Plot of (5.1) with 50 Representative Samples

Stress Test Framework for Systems

44

are given as

, we obtain Figure 5.11.

.1) of the representative samples in Figure 5.11 are,

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

45
© The INFRARISK Consortium

 








−

−
=








08.0

03.0

y

x
, and 









−

−
=

90.108.0

08.012.2
S .

5.3 Sampling Recommendation

If a multivariate probability distribution can be factorised in a product of several probability

distributions of lesser dimensionality, as is the case in (5.1), via (5.2)-(5.4) , then no univariate

representation is needed for the system as a whole, as one can sample the factorisations separately.

Moreover, if these factorisations allow for simple MC-sampling, as is the case for (5.3) and (5.4),

then one may obtain very easily and large numbers representative of samples from factorised

system of independent components. A non-trivial example of a system of independent components

is the system of damage state probabilities for the bridges under the stress scenario in Figure 3.2, as

we have that for a given river discharge scenario the damage state probabilities for each bridge in

the system are independent of (i.e. unconditional on) the damage states of the other bridges, (3.11).

If a multivariate probability distribution cannot be factorised in a product of several probability

distributions of lesser dimensionality, as is the case in (4.1), then some kind of univariate

representation is needed for the system as a whole, as this will allow for either a simple MC-

sampling or a somewhat more involved staircase sampling from this univariate representation (see

Figures 4.6-4.11). A non-trivial example of a system of ‘dependent’ components is the ‘system’ of

fragility parameters values in the joint probability distribution (3.5), as we have that this joint

probability distribution cannot be factorised in probability distributions of the respective fragility

parameters 1α , 2α , 3α , and β . In the next chapter we will present the Nested Sampling algorithm

(Skilling, 2004), by which we may obtain univariate representations of any probability distribution

which defined on a system of depedent components and/or joint probability distribution which

cannot be factorized to a product of univariate probability distribution.

So our recommendation is as follows. For a probability distribution which is defined on a system of

independent components, use simple MC-sampling or a variation thereof for each of the

independent components. For a probability distribution which is defined on a system of dependent

components, first obtain a univariate representation of that system probability distribution, either

by brute force evalution (see Chapter 4) or by way of Nested Sampling (see Chapter 6), and then use

simple MC-sampling or a variation thereof on that univariate representation.

In closing, the actual ordering of the area elements are not pertinent to either sampling method; i.e.

from a sampling point of view a monotonic increasing function is , say, ()wh is just as good as a

descending one. What is key, however, is that the multivariate distribution (Figures 4.1 and 5.1) has

been reduced to an univariate one (4.5 and 5.5), which then allows us to sample that univariate

representation by constructing its corresponding cumulative distribution function (Figures 4.6 and

5.6) or, alternatively, its staircase sampler (Figures 4.7 and 4.8).

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

46
© The INFRARISK Consortium

It is only because Nested Sampling takes advantage of the fact that it has constructed ()wg to be

monotonic descending (see Chapter 6) that the monotonic descending form, as displayed in Figures

4.5 and 5.5, is prefererred over any other.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

47
© The INFRARISK Consortium

6.0 NESTED SAMPLING

By reducing any k-variate probability distribution p to a corresponding monotonic descending

univariate function g , and by using order statistics, the univariate representation of any k-variate

probability distribution p may be evaluated using a Monte Carlo sampling scheme called Nested

Sampling (Skilling, 2004; Skilling, 2006). Nested Sampling is used in the case study in Chapter 3 to

come to an estimate of the joint probability distribution of the fragility parameters (3.5).

6.1 Sampling Abcissa’s

Say, we have some multivariate probability distribution ()xp for which we want to obtain an

univariate representation, say,

()wg , for Ww ≤<0 . (6.1)

By construction, we may let g be some montonic descending function of w . Let
()wx be some some

point in the parameter space of p , then
()()wp x will correspond, by construction, with some value

()wg . Now, if we have a value of the ordinate ()wg (i.e. the “y-value”) without knowing the

corresponding abscissa value w (i.e. the “x-value). Then the only thing we know about w is that it

take on a value somewhere in the range

Ww ≤<0 , (6.2)

where W is the (hyper-)volume that spans the parameter space of ()Nxxx ,,, 21 K=x ; that is,

Nxxx RRRW L

21
= , (6.3)

where
kxR is the range that spans the domain of parameter kx ; e.g. in Figure 4.5

() () 1001010 ==W . The (uninformed) state of knowledge (6.2) translates directly to the state of

knowledge that w is uniformly distributed as

()
W

wp
1

= , for Ww ≤<0 , (6.4)

with a mean of

 ()
2

W
wE = , (6.5)

and a standard deviation of

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

48
© The INFRARISK Consortium

()
32

W
wstd = , (6.6)

Now, suppose that we sample n values of ()wg , that is, we have sampled () ()nwgwg ,,1 K , and

though we still do not know the values of nww ,,1 K , the one thing we now do know is that the

smallest realisation of ()wg must correspond with the greatest value of w . This is because function

()wg is, by construction, a monotonic descending function. It follows that we may use an order

distribution for the unknown value maxw :

 ()
WW

w
nwp

n
1

1

max
max

−









= , for Ww ≤< max0 , (6.7)

with mean of

 () W
n

n
wE

1
max

+
= , (6.8)

and a standard deviation

()
112

max
+

→
++

=
n

W

n

W

n

n
wstd , as 1>>n , (6.9)

Note that the standard deviation, that is, our uncertainty regarding the unknown value of maxw ,

falls of with a factor of approximately n . It will be seen that (6.8) and (6.9) form the backbone of

the Nested Sampling algorithm.

6.2 The Basic Nested Sampling Algoritm

In this discussion of the Nested Sampling algorithm we will not protect against under- and overflow.

We will just focus here on the basic philosophy which underlies Nested Sampling.

Step 1.

Find n random values ix in the x -plane, where all the states ix are assumed to be equally

probable and greater than zero

 () 0>= ii Pp x , for ni ,,2,1 K= . (6.10)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

49
© The INFRARISK Consortium

It holds trivially that the n values of ()ip x also correspond with n values of its univariate

representation ()wg , as we always may perform the steps as shown in Figures 4.1- 4.5 and Figures

5.1- 5.5.

In the absence of an explicit sorting of the volume/area elements, we cannot map the x -

coordinates to the corresponding w -coordinate explicitly. But the thing we can do is use (6.8) to

statistically approximate this corresponding w -coordinate for the ix that gives the smallest

observed iP (6.10), and thus get our first coordinate ()11 , gw of the unknown function ()wg ,

where

 W
n

n
w

1
1

+
= , () ()[]i

i
i

i
pPg xminmin1 == , (6.11)

where the error of our estimated 1w will fall of with a factor n , as can be seen in (6.9). We now

approximate the integral right of 1w (6.11) as

() () 1111
1

1

g
n

W
gwWdwwgA

W

w
+

=−≈= ∫ , (6.12)

and we set

11 AZ = . (6.13)

Step 2.

We again find n random values jx in the x -plane, but now we constrain these random values to

be equal or greater than the value of the minimum of the last iterate, that is, we sample jx under

the constraint (6.11)

() 1gPp jj ≥=x , for nj ,,2,1 K= , (6.14)

where all the states jx which adhere to this constraint are assumed to be equally probable. Let

*

1 ww = , (6.15)

then we may rewrite the constraint (6.14) as the equivalently constraint

() ()*
wgwg j ≥ , for nj ,,2,1 K= , (6.16)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

50
© The INFRARISK Consortium

as it holds trivially that the n values of ()xp must correspond with n values of ()wg . Now, since

()wg is by construction a monotonic descending function, and since 1w is the coordinate that is

associated with the lowerbound 1g (6.11), it follows that the equivalent sampling constraints (6.14)

and (6.16) imply for the unknown jw the constraint

*
0 ww j ≤< . (6.17)

So, again by way of (6.8), but now replacing W with 1w , the second coordinate ()22 , gw of the

unknown function ()wg may be estimated as

 12
1

w
n

n
w

+
= , () ()[]j

j
j

j
pPg xminmin2 == . (6.18)

We now approximate the area integral from 2w to 1w as

 () 2
1

2
1

11

2

g
n

w
dwwgA

w

w
+

−
≈= ∫ , (6.19)

and we approximate the area integral from 2w tot W as

() 212

2

AAdwwgZ

W

w

+≈= ∫ . (6.20)

Step t.

For the t
th

 iterate we find n random values kx in the x -plane under the constraint

() 1−≥= tkk gPp x , for nk ,,2,1 K= , (6.21)

where all the states jx which adhere to this constraint are assumed to be equally probable. The

ordinate of the t
th

 coordinate ()tt gw , of the unknown function ()wg may be estimated as

 () ()[]k
k

k
k

t pPg xminmin == , (6.22)

and its corresponding abscissa, by way of the order statistic (6.8), is estimated as

 1
1

−
+

= tt w
n

n
w . (6.23)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

51
© The INFRARISK Consortium

We now approximate the area integral from tw to 1−tw as

 () t
t

w

w

t g
n

w
dwwgA

t

t
1

11

1

+

−
≈= −∫

−

, (6.24)

And we approximate the area integral from tw tot W as

() ∑∫
=

≈=
t

i

i

W

w

t AdwwgZ

t
1

. (6.25)

Termination Step.

We have that 0lim =∞→ tt w , because of the identity:

 W
n

n
w

t

t 








+
=

1
. (6.26)

So, if we want to find the iteration T at which we need to terminate the Nested Sampling run we

may solve

T

T

wW
n

n
=









+1
 (6.27)

for T , which gives










+










=

1
log

log

n

n

W

w

T

T

. (6.27)

where Tw is the point on the w -axis where we stop to evaluate the function g , W is the (hyper-)

volume of the parameter space (6.3), and n is the number of samples which are sampled uniformly

with the likelihood constraint at each iteration step (i.e. n is number of ‘Nested Sampling objects’).

For example, we may let the Nested Sampling algorithm run T iterations until 1.0=Tw or, if we

wish more precision, until 01.0=Tw , as we have that Ww ≤<0 .

6.3 Issues of Computational Efficiency

In the Nested Sampling algorithm we need at each iteration t to obtain n equiprobable samples kx

under the constraint (6.21)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

52
© The INFRARISK Consortium

 () 1−≥ tk gp x , for nk ,,1 K= ,

where 00 =g . One computationally wasteful way to obtain these n equiprobable samples is to

just draw random samples until we have obtained the necessary n samples that adhere to (6.21).

Another, more efficient way is to realize that at iteration step ()1−t we already had ()1−n objects

that satisified both the constraint (7.22) as well as the desideratum of equiprobability; see (6.10),

(6.14), and (6.21). If we keep these ()1−n objects, then we only need to sample one aditional object

in order to obtain our needed sample of n objects.

In the words of Skilling (2004): “After each iteration t we discard one object from our sample of n

objects. This discarded object becomes the lowerbound tg . The ()1−n surviving objects are taken

to the next iteration and an additional object nx is sampled under the constraint () tn gp ≥x . This

implementation reduces the computational costs with an order of magnitude of n .”

The generating of an additional object nx under:

(a) the constraint () tn gp ≥x ,

(b) the desideratum of equiprobability,

at time step ()1+t is where the computational overhead of Nested Sampling lies. The constraint (a)

is simple enough to enforce. All proposals nx with probabilities () tn gp <x are simply rejected.

However, the desideratum of equiprobability is more difficult to fullfill. Equiprobability means that

all the states ix , for which we have () ti gp ≥x , must have the same probability of being sampled.

For the implementation of the Nested Sampling algorithm in the InfraRisk, we use a simple MCMC

sampler (Sivia and Skilling, 2006; Section 9.6.3).

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

53
© The INFRARISK Consortium

7.0 THE PROBABILITY SORT ALGORITHM

We now discuss the concept/background behind the Probability Sort algorithm for the case where

we have only two damage states 2=M ; that is, the states damaged and not-damaged. The

MATLAB code, together with a pseudo-code for the general case of arbitrary M is given in Appendix

A.

For the case where 2=M , the number of possible damage states will be
N2 . The Probability Sort

algorithm goes from the most likely damage state
()1

ix , to the next likely damage state
()2

ix , to the

next likely damage state
()3

ix , and so on, such that

()() ()()t

i

s

i pp xx ≥ , for ts < . (7.1)

The selection of the
()s

ix is done so efficiently that there are no rejections in the damage state

proposals. Moreover, the selection itself only takes ()NO time.

For the specific case 2=M , the state vectors
ix , for N

i 2,,2,1 K= , may be constructed as vector

consisting of 0 and 1’s. The probabilities of an element
kx in

ix being either 0 or 1 is dependent on

the PGA value which is associated with that element

()

()kj PGAxp
k

| , for ,2,1=kj (7.2)

and Nk ,,2,1 K= . So, the probability which is associated with a given
ix may be computed as

 ()
()

()∏
=

=
N

k

kji PGAxpp
k

1

|x . (7.3)

Now, let

()
()

()
()[]

kjkjk PGAxpPGAxpp
kk

|0,|1maxmax === (7.4)

be the maximum possible damage state probability for component k , and let

 { }1,0max ∈kx (7.5)

be the damage state which corresponds with this maximum probability. Then the damage state

vector with maximum probability,

 ∏
=

=
N

k

kpP
1

maxmax , (7.6)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

54
© The INFRARISK Consortium

is given as

 { }maxmax

2

max

1

max ,,, Nxxx K=x . (7.7)

Now, it stands to reason that this ‘Most Likelihood’ damage state vector
maxx should be the first and

foremost of all the possible damage state scenarios of which the consequences should be evaluated;

that is,

() max1

xx =i , (7.8)

where, by construction,

()() () maxmax1
Ppp i == xx . (7.9)

If we follow this line of reasoning, then the second best damage state proposal would be that

damage state vector which has the second highest probability.

Now, the minimum possible probability for a damage state for component k is given as (7.4):

()

()
()

()[]
kjkjkk PGAxpPGAxppp

kk
|0,|1min1 maxmin ===−= , (7.10)

with corresponding damage state (7.5):

 { }1,01 maxmin ∈−= kk xx . (7.11)

Let

 { }minmin

2

min

1

min ,,, Nppp K=p (7.12)

be the vector with the minimum probabilities for the N components. Then the damage state
min

qx

which corresponds with the maximum of the minimum vector (7.12)

 ()minmin
max p=qp (7.13)

is the only possible candidate for as state switch (7.11):

() { }maxmax

1

minmax

1

max

2

max

1

2
,,,,,,, Nqqqi xxxxxx KK +−=x (7.14)

So, the probability which corresponds with this second best proposal is (7.4), (7.6) and (7.13):

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

55
© The INFRARISK Consortium

()() max

max

min

2
P

p

p
p

q

q

i =x . (7.15)

as the qth state probability has switched from its maximum probability state to its minimum.

Now, the third most probable damage state vector necessarily will also be of the form where only

one damage state, say
ux , is being switched, as we reset qx to its original damage state value in

(7.7):

() { }maxmax

1

maxmax

1

max

1

minmax

1

max

2

max

1

3
,,,,,,,,,,, Nqqquuui xxxxxxxxx KKK +−+−=x . (7.16)

But as we come to the fourth most probable damage state vector, then we find that we bifurcate

into the possibility of either both
ux and qx being switched,

() { }maxmax

1

minmax

1

max

1

minmax

1

max

2

max

1

4
,,,,,,,,,,, Nuuuqqq

a

i xxxxxxxxx KKK +−+−=x , (7.17)

or
ux being reset to its original damage state value in (7.7), as we switch some other element, say

wx :

() { }maxmax

1

minmax

1

maxmaxmax

2

max

1

4
,,,,,,,,,,, Nwwwuq

b

i xxxxxxxx KKKK +−=x . (7.18)

In Appendix A the Probability Sort switching algorithm is given which produces scenario proposals

ordered by their probabilities.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

56
© The INFRARISK Consortium

8.0 THE MODELLING OF CASCADING EFFECTS

The INFRARISK project is concerned with the behaviour of critical infrastructures, such as road and

rail networks, when subjected to natural hazards such as landslides, floods, earthquakes or a

combination of all three. These natural hazards, as well as the consequent behaviour of the

infrastructural elements, vary both spatially and temporally.

For example, the closer an infrastructural objects is to the epicentre of some seismic event, the

greater will be its tendency to be in a damaged state. Moreover, if the damage state of one

infrastructural objects is dependent on the damage state of another, then as the latter

infrastructural object is damaged and time progresses the greater will be the probability of the

former infrastructural object to be in a damaged state.

One example of such a system of temporally related systems of interdependent damage states is,

say, an infrastructural system where the levee damage states are dependent upon the damage state

of the electrical infrastructure (flooding influences functionality of power generators), and vise versa

(levees are powered by electricity). Another example is, say, a system consisting of pressurized fuel

storage tanks, where an exploded damage state of one or more storage tanks will be of influence, by

way of initial overpressure and subsequent heat radiation, on the damage states of the surrounding

storage tanks.

In this chapter we will discuss the modelling of temporal dependencies between systems of

interdependent damage states, by way of the latter fuel storage field example, as this is the

archetypical example of a cascading effect scenario.

8.1 The ‘Physics’ Behind the Probability Map

For our fuel storage field it is assumed that the explosion of a given pressurized fuel storage tank

generates a heat radiation of, say, 200 kW/m
2
 which falls of, say, as the inverse of the distance.

Moreover, it is assumed that the total heat radiation for multiple explosions is a superposition of the

heat radiation of the separate explosions.

For example, if we have K exploded fuel tanks, having coordinates ()kk YX , , for Kk ,,1 K= . Then

the total heat radiation R which is experienced by an intact fuel tank having coordinates ()yx, is

given as

 ()
() ()

∑
= −+−

=
K

k
kk YyXx

yxR
1

22

200
, . (8.1)

The corresponding (probit) probability of being damaged is given as

 () ()
,

2

,7534.4
1

2

1
, 















 +−
+=

yxR
erfyxP (8.2)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

57
© The INFRARISK Consortium

which for a heat radiation of () 0, 00 =yxR will give a corresponding base-line damage probability of

() 6

00 10, −=yxP .

8.2 Some Example Probability Maps

Say we have 25=N fuel storage objects arranged in a 5-by-5 grid with, say, a distance of 50

meters between horizontally and vertically adjacent objects and a distance of

22 505071.70 +=

meters between diagonally adjacent objects. If we let the fuel storage objects with coordinates

()150,150 and ()100,150 explode, then we obtain the state matrix in Table 8.1.

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

Table 8.1: State Matrix 1

The corresponding probability map may be constructed by way of (8.1) and (8.2), Table 8.2.

0.0129 0.0446 0.0778 0.0446 0.0129

0.0605 0.4459 0.8937 0.4459 0.0605

0.1674 0.9810 1 0.9810 0.1674

0.1674 0.9810 1 0.9810 0.1674

0.0605 0.4459 0.8937 0.4459 0.0605

Table 8.2: Explosion Probability Map for State Matrix 1

Alternatively, if we let the fuel storage objects with coordinates ()150,150 , ()200,150 , ()150,100

explode, then we obtain the state matrix in Table 8.3.

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

Table 8.3: State Matrix 2

The corresponding probability map may be constructed by way of (10.1) and (10.2), Table 8.4.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

58
© The INFRARISK Consortium

0.5943 0.9688 0.9988 0.8994 0.3296

0.9688 1.0000 1 0.9999 0.6180

0.9988 1 1 1.0000 0.6438

0.8994 0.9999 1.000 0.9508 0.3877

0.3296 0.6180 0.6438 0.3877 0.1313

Table 8.4: Explosion Probability Map for State Matrix 2

It may be glanced from Tables 8.2 and 8.4 that the superposition of heat radiation in (8.1) in all

likelihood will lead to a cascade of explosions.

8.3 Probability Sort Analysis of Cascading Effects

Say we have 25=N fuel storage objects arranged in a 5-by-5 grid with, say, a distance of 50

meters between horizontally and vertically adjacent objects. The primary initiating event, at time

step 0=t , is the event where the centre fuel storage object with coordinates ()150,150 has

exploded, Table 8.5.

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

Table 8.5: State Matrix of Primary Event at t = 1

The corresponding probability map may be constructed by way of (10.1) and (10.2), Table 8.6.

0.0004 0.0015 0.0029 0.0015 0.0004

0.0015 0.0271 0.2256 0.0271 0.0015

0.0029 0.2256 1 0.2256 0.0029

0.0015 0.0271 0.2256 0.0271 0.0015

0.0004 0.0015 0.0029 0.0015 0.0004

Table 8.6: Explosion Probability Map for Primary Event at t = 1

The number of damage states is 2=M , the number of objects is 25=N , and the number of

elements in a damaged (i.e. exploded) state is 1=K . So the total state space which corresponds

with the explosion probability map in Table 8.6 is

724125 1068.122 ×=== −−KN

M . (8.3)

It follows that following the primary event in Table 8.5, we will have
242 possible event scenarios at

each time step. Among these higher order event scenarios are the scenarios in Tables 8.1, 8.3, and

8.5, with corresponding probability maps Tables 8.2, 8.3, and 8.6.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

59
© The INFRARISK Consortium

As we have an irreversible process (i.e exploded fuel storage tanks cannot ‘unexplode’), the total

number of scenario routes at a given time step may be modelled by way of a
242 -by-

242 Markovian

transition matrix, having

142424 1081.222 ×=× (8.4)

elements. Now, a state matrix with K explosions will map to possible
K−252 end points. So, our

hypothetical
242 -by-

242 Markovian transition matrix has

()

11
24

1

2424 1082.22
!24!

!24
2 ×=

−
+∑

=

−

i

i

ii
 (8.5)

non-zero probability elements. In other words, at a given time step 0>t there are
111082.2 ×

admissible routes in which we go from one of the
71068.1 × possible starting scenarios to some

admissible subset of the total scenario space, with subsets ranging from
71068.1 × scenarios to 1

scenario.

This overwhelming number of admissible routes (8.5) notwithstanding, it is found that the

Probability Sort algorithm will give very decent probability coverages over the time steps for given

probability cut-offs for the primary event in Table 8.5, with a probability map ‘physics’ of (8.1) and

(8.2), Table 8.6. In Table 8.7 these probability coverages are given together with the number of

active probability components at each time step.

Time Step Cut-off = 10
-6

Cut-off = 10
-7

coverage # components coverage # components

1 0.9995 1094 0.9999 2459

2 0.9177 33100 0.9754 111430

3 0.8745 16104 0.9608 61476

4 0.8529 7069 0.9527 32864

5 0.8426 2417 0.9484 15976

6 0.8382 651 0.9463 7045

7 0.8365 126 0.9452 2373

Table 8.7: Probability Coverage and Number of Active Probability Components

The probability cut-offs in Table 8.7 are enforced such that the probability for a given scenario, (8.3),

at a given time step is not smaller than that cut-off.

It may be glanced from the time progression of the number of active probability components in

Table 8.7 that the primary event in Table 8.5, together with (8.1) and (8.2), will lead us from an initial

low-entropic state, to an intermediate higher-entropic state, back to a final low entropic state. This

may be explained as follows.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

60
© The INFRARISK Consortium

Initially, we only expect the fuel storage objects which are horizontally and vertically adjacent to the

exploded object to reach an exploded state, Table 8.6. Because of the superposition of heat

radiation we expect (see Tables 8.2 and 8.4) the fuel storage tank field to cascade as time

progresses to a total conflagration state. But we are uncertain as to the route that will take us from

the initial low entropic state to this final low entropic state. This uncertainty translates to an

intermediate higher entropic state where the probabilities are more spread out over the total state

space and, consequently, more active probability components are in play.

8.3.1 Time Evolving Marginal Damage State Probabilities

If, for the cut-off of 10
-7

, we weigh the damage state ‘matrices’
()sx by the normalized probabilities

()
()

()∑ =

=
S

s

S

s
s

P

P
P

1

~
 , (8.6)

where
()sP is the probability of

()sx and S is the total number of active probability components, or,

equivalently, probability sort scenario proposals, then we obtain the following expected marginal

probabilities, say, ()θE , where

 () () ()∑
=

=
S

s

ssPE
1

~
xθ , (8.7)

of being in an exploded state, Tables 8.8-8.14.

.0004 0.0015 0.0029 0.0015 0.0004

0.0015 0.0271 0.2256 0.0271 0.0015

0.0029 0.2256 1.000 0.2256 0.0029

0.0015 0.0271 0.2256 0.0271 0.0015

0.0004 0.0015 0.0029 0.0015 0.0004

Table 8.8: Estimated Explosion Probability Map at t = 1

0.1426 0.2902 0.3703 0.2902 0.1426

0.2902 0.5637 0.7353 0.5637 0.2902

0.3703 0.7353 1.000 0.7353 0.3703

0.2902 0.5637 0.7353 0.5637 0.2902

0.1426 0.2902 0.3703 0.2902 0.1426

Table 8.9: Estimated Explosion Probability Map at t = 2

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

61
© The INFRARISK Consortium

0.7318 0.7776 0.8024 0.7776 0.7318

0.7776 0.8624 0.9161 0.8624 0.7776

0.8024 0.9161 1.000 0.9161 0.8024

0.7776 0.8624 0.9161 0.8624 0.7776

0.7318 0.7776 0.8024 0.7776 0.7318

Table 8.10: Estimated Explosion Probability Map at t = 3

0.9178 0.9315 0.9390 0.9315 0.9178

0.9315 0.9571 0.9736 0.9571 0.9315

0.9390 0.9736 1.000 0.9736 0.9390

0.9315 0.9571 0.9736 0.9571 0.9315

0.9178 0.9315 0.9390 0.9315 0.9178

Table 8.11: Estimated Explosion Probability Map at t = 4

0.9754 0.9794 0.9815 0.9794 0.9754

0.9794 0.9868 0.9918 0.9868 0.9794

0.9815 0.9918 1.000 0.9918 0.9815

0.9794 0.9868 0.9918 0.9868 0.9794

0.9754 0.9794 0.9815 0.9794 0.9754

Table 8.12: Estimated Explosion Probability Map at t = 5

0.9929 0.9939 0.9945 0.9939 0.9929

0.9939 0.9960 0.9974 0.9960 0.9939

0.9945 0.9974 1.000 0.9974 0.9945

0.9939 0.9960 0.9974 0.9960 0.9939

0.9929 0.9939 0.9945 0.9939 0.9929

Table 8.13: Estimated Explosion Probability Map at t = 6

0.9981 0.9983 0.9984 0.9983 0.9981

0.9983 0.9988 0.9992 0.9988 0.9983

0.9984 0.9992 1.000 0.9992 0.9984

0.9983 0.9988 0.9992 0.9988 0.9983

0.9981 0.9983 0.9984 0.9983 0.9981

Table 8.14: Estimated Explosion Probability Map at t = 7

It may be glanced from Tables 8.8-8.14, that the marginal probabilities of being in an exploded state

will increase in magnitude as time progresses. Also note that the estimated marginal probabilities of

being in an exploded stated at time step 1, Table 8.8, are the same as the analytical probability map

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

62
© The INFRARISK Consortium

in Table 8.6, which was obtained by way of the primary event in Table 8.5 and the probability map

model (8.1) and (8.2).

8.3.2 Time evolving ML-damage states

We now will focus on the change in probabilities of four representative fixed damage state

scenarios, Tables 8.15-8.18.

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

Table 8.15: State Matrix 1

In Table 22 we have the total containment scenario, where no additional fuel storage objects

explode.

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0

Table 8.16: State Matrix 2

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

Table 8.17: State Matrix 3

In Tables 8.16 and 8.17 we have limited spill-off scenarios, where, respectively, one and two

additional fuel storage objects have exploded.

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Table 8.18: State Matrix 4

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

63
© The INFRARISK Consortium

In Table 8.18 we have the total destruction scenario, where all the storage objects have exploded.

We now take a look at the progression of the probabilities of these damnage states as time

progresses, where we put the Most Likelihood (ML) probabilities in boldface, Table 8.19.

Time Step P(State matrix 1) P(State matrix 2) P(State matrix 3) P(State matrix 4)

1 0.3140 0.0915 0.0267 9.17 5610−×

2 0.0986 0.0287 0.0084 0.0282

3 0.0310 0.0090 0.0026 0.6703

4 0.0097 0.0028 0.0008 0.8650

5 0.0031 0.0009 0.0003 0.9226

6 0.0010 0.0003 8.14 510−× 0.9390

7 0.0003 8.78 510−× 2.56 510−× 0.9433

Table 8.19: Probabilities of State Matriices in Tables 8.15-8.18

At both time steps 1 and 2 the total containment scenario is the ML scenario. From time step 3

onwards, the total destruction scenario becomes the ML scenario. At time step 1 there is still a

considerable likelihood that there is either full containment or limited spill-off:

 () () 8402.00267.0
2

4
0915.0

1

4
3140.0 =








+








+ , (8.8)

where the combinatorial factors result from the switching symmetries present in Table 8.6. At time

step 2 this likelihood has dropped off dramatically:

 () () 2638.00084.0
2

4
0287.0

1

4
0986.0 =








+








+ . (8.9)

At time step 3 the likelihood of either full containment or limited spill-off has dwindled to a mere

 () () 0826.00026.0
2

4
0090.0

1

4
0310.0 =








+








+ , (8.10)

while the probability of the total destruction scenario is a hefty 0.6703, and as time progresses this

probability approaches certainty. Especially so, if we take into account that total probability

coverage has not been achieved (i.e., compare the right hand probability coverages in Table 8.7 with

the State Matrix 4 probabilities in Table 8.19).

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

64
© The INFRARISK Consortium

9.0 CONCLUSIONS

This deliverable contains a general stress test framework. In this framework stress tests are just a

special instance of a risk assessment, where instead of marginalizing over the entire possible stress

scenarios one specific stress scenario is chosen instead for which to gauge its potential effects.

If we wish to conduct a stress test on large probabilistic systems consisting of many stochastic

components then, as a matter of practical implementation, the evaluation of the densitity of states

will necessitate the use of sampling techniques. If the stochastic components in the probabilistic

system under consideration are independent then MC-sampling may be used, if the stochastic

components are dependent then Nested Sampling is recommended, and if temporal and spatial

correlations (i.e. cascading effects) are to be evaluated on a system of stochastic components, then

the Probability Sort algorithm is recommended.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

65
© The INFRARISK Consortium

REFERENCES

Adey, B.T., Hackl, J., Heitzler, M. & Iosifescu., I. (2014) Preliminary Model, Methodology and

Information Exchange. Deliverable 4.1, Novel indicators for identifying critical, INFRAstructure at

RISK from Natural Hazards, grant agreement No. 603960 July, 93 pages.

Blaschke, W., Jones, M.T., Majoni, G. & Peria, S.M. (2001) Stress Testing of Financial Systems: An

Overview of Issues, Methodologies, and FSAP Experiences. IMF Working Paper.

Boje, D. & Murnighan J. (1982) Group confidence pressures in iterative decisions. Management

Science, 28, 1187-1196.

Brockhoff K. (1975) The perfomance of forecasting groups in computer dialogue and face to face

discussions. In Linstone H. & Turoff M. (eds.) The Delphi Method: Techniques and Applications.

London: Addison-Wesley.

Cheng, T. & Taalab, K. (2014) Integrated Spatio-Temporal Database. Deliverable 5.1, Novel indicators

for identifying critical, INFRAstructure at RISK from Natural Hazards, grant agreement No. 603960,

35 pages.

D'Ayala D. & Gehl P. (2015) Fragility Functions Matrix. Deliverable 3.2, Novel indicators for identifying

critical, INFRAstructure at RISK from Natural Hazards, grant agreement No. 603960.

Delbecq, A.L., Van de Ven, A.H. & Gustafson, D.H. (1975) Group Techniques for Program Planning: A

Guide to Nominal and Delphi Processes. Scott, Foresman and Co., Glenview, IL.

Delphi Method: Techniques and Applications (2002) Editors: Harold A. Linstone and Murray Turoff .

(web edition at http://is.njit.edu/pubs/delphibook/)

Gavin, K. & Martinovic, K. (2014) Critical Infrastructure Database. Deliverable 2.1, Novel indicators

for identifying critical, INFRAstructure at RISK from Natural Hazards, grant agreement No. 603960,

19 pages.

Gehl, P. & D’Ayala D. (2015) Integrated Multi-Hazard Framework for the Fragility Analysis of

Roadway Bridges. Proceedings of the 12th International Conference on Applications of Statistics and

Probability in Civil Engineering (ICASP12), Vancouver, Canada, July 12-15.

Gibbs, W., Graves, P. R., & Bernas, R. S. (2001) Evaluation guidelines for multimedia courseware.

Journal of Research on Technology in Education, 34(1), 2-17.

Jürgen, H., Magnus, H., Juan Carlos, L., Bryan A. & Lorenz H. (2016) Final Model, Methodology

and Information Exchange. Deliverable 4.2, Novel indicators for identifying critical, INFRAstructure at

RISK from Natural Hazards, grant agreement No. 603960, 210 pages.

International Actuarial Association (IAA) Insurance Regulation Committee (2013) Stress Testing and

Scenario Analysis.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

66
© The INFRARISK Consortium

Jaynes, E.T. (2003) Probability Theory: The Logic of Science. Cambridge University Press.

Jaynes, E.T. (1968) Prior Probabilities. IEEE Trans. Systems Sci. Cybernetics SSC-4 (3), 227-241.

Jonkman, S.N., Vrijling, J.K. & Van Gelder, P.H.A.J.M. (2006) A Generalized Approach for Risk

Quantification and the Relationship Between Individual and Societal Risk. In Guedes Soares & Zio

(Eds.), Safety and reliability for managing risk (pp. 1051-1059). London: Taylor and Francis Group.

Krauß, M. & Berg H.P. (2011) New Evaluation of External Hazards in the Light of the Fukushima

Accident. 9
th

 International Probabilistic Workshop, Budelmann H., Holst A. and Proske D. (Eds.),

Braunschweig, Germany.

Murphy, M.K., Black, N., Lamping, D.L., McKee, C.M., Sanderson, C.F.B., and Askham J. (1998)

Consensus development methods and their use in clinical guideline development. Health Technology

Assessment 2(3).

Prak, P. (2009) Onderzoek Naar de Toepassing van Similarity Judgment Bij het Vaststellen van

Alerteringslocaties Binnen de Spoorsector. SSM thesis, TU Delft.

Powell, C. (2003). The Delphi technique: Myths and realities. Methodological Issues in Nursing

Research, 41 (4), 376-382.

Ritchey, T. (1998) General Morphological Analysis: A General Method for Non-Quantified Modelling.

16th EURO Conference on Operational Analysis, Brussels.

Rowe, G. & Wright G. (2001) Expert opinions in forecasting: role of the Delphi technique. In:

Armstrong, editor. Principles of forecasting: a handbook of researchers and practitioners. Boston:

Kluwer Academic Publishers.

Shinozuka, M., Feng, M. Q., Kim, H., Uzawa, T., and Ueda T. (2003). Statistical analysis of fragility

curves. MCEER University at Buffalo, State University of New York, Buffalo.

Sivia, D.S. & Skilling, J. (2006) Data Analysis: A Bayesian Tutorial. Oxford University Press Inc., New

York.

Skilling, J. (2004) Nested Sampling. In Maximum entropy and Bayesian methods in science and

engineering (ed. G. Erickson, J.T. Rychert, C.R. Smith), AIP Conf. Proc. 735, 395-405.

Skilling, J. (2006): Nested Sampling for Bayesian Computations. Proceedings Valencia/ISBA 8th World

Meeting on Bayesian Statistics.

Van Danzig, D. (1956) Economic Decision Problems for Flood Prevention. Econometrica 24, p. 276 -

287.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

67
© The INFRARISK Consortium

Van Erp H.RN., Linger R.O., & Van Gelder P.H.A.J.M., (2016) An Outline of the Bayesian Decision

Theory. In Bayesian Inference and Maximum Entropy Methods in Science and Engineering-35th

International Workshop, Potsdam, New York.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

68
© The INFRARISK Consortium

APPENDIX A: THE PROBABILITY SORT ALGORITHM

A.1 Algorithmic Outline

Step 1: Permutate the stateMatrix and the probMatrix into their desired base-line states.

Step 2: Define the function undoPermutate(.) which undoes these base-line permutations in the

final probability sorted damage state vectors.

Step 3: Set up the output list probabilitySort and the intermediate Proposals list.

Step 4: enter a While-loop, until the desired number of probability sorted damage state vectors,

desiredNumber, has been obtained, or until all possible damage state vectors have been passed

through, whichever comes first.

Step 5: take that damage state vector entry from the Proposals list which has the

maximum probability, make the components of that entry available within the While-loop, clean up

the Proposals list, update the probabilitySort list by way of these components, and update the total

probability coverage variable sumProb.

Step 6: replenish the Proposals list which with a maximum of three new proposals. These new

proposals guarantee that all the remaining leaves of the event tree of the damage state space may

still be explored, and that the next best probability is always in the updated Proposals list.

Step 7: Print the sumProb probability coverage value and terminate the algorithm. The

probabilitySort list consisting of the probability sorted damage state vectors and their corresponding

probabilities is now available for the user.

A.2 Pseudo-Code

INPUT

stateMatrix: State matrix/list of the N components under consideration.

probMatrix: State probability matrix/list of the N components under consideration.

desiredNumber: desired number of probability sorted damage state vectors.

OUTPUT

probabilitySort: list consisting of damage state proposals
()sx with corresponding probabilities

()sP ,

ordered in descending order by way of the probabilities
()sP ;

sumProb: the total probability density covered by the probabilities of the damage state vectors in

the list probabilitySort

ALGORITHM

Step 1.a

If we have M possible damage states for each of the N possible infrastructural elements, then we

may define the N-by-M matrix

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

69
© The INFRARISK Consortium

stateMatrix =



















M

M

M

L

MOMM

L

L

21

21

21

 (1)

the corresponding probability matrix which has its rows the damage state pdf of the corresponding

infrastructural element may be given as the N-by-M matrix ,

probMatrix =



















NMNN

M

M

θθθ

θθθ

θθθ

L

MOMM

L

L

21

22221

11211

 (2)

We then do a Sort over the rows of probMatrix so that per rows the probabilities are in descending

order, from large to small:

permutatedProbMatrix =

() () ()
() () ()

() () ()

















NMNNNMNNNMNN

MMM

MMM

θθθθθθθθθ

θθθθθθθθθ

θθθθθθθθθ

,,,min,,,nextMax,,,max

,,,min,,,nextMax,,,max

,,,min,,,nextMax,,,max

212121

222212222122221

112111121111211

KLKK

MOMM

KLKK

KLKK

 .

 (3)

where we track the permutations of each of the rows that take us from probMatrix to

permutatedProbMatrix. These permutations are then applied to the corresponding rows in

stateMatrix. A possible realization of the resulting permutatedStateMatrix may be, say

permutatedStateMatrix =



















−

21

12

12

L

MOMM

L

L

M

MM

M

. (4)

The permutatedStateMatrix allows us to keep track of which probabilities in the rows of

permutatedProbMatrix point to which damage state.

The first column of the permutatedStateMatrix then gives the damage state vector that has the

highest probability of occurring, with a probability of

P = 1;

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

70
© The INFRARISK Consortium

For[i =1, i ≤ N,

P = P × permutatedProbMatrix(i, 1);

 i++]

N.B.: Instead of the specific case of a N-by-M matrix, we alternatively, and more generally, may

have a list of length N , say, probList, with in each row of that list a discrete probability distribution

over iM damage states, where Ni ≤≤1 , which are given in the corresponding rows of the list, say,

stateList. For this more general case we may compute a permutatedProbList and a

permutatedStateList. The first column of the permutatedStateList then also will give the damage

state vector that has the highest probability of occurring, with a probability of P.

Step 1.b

then do a row Sort over the entire permutatedProbMatrix such that in its second column the

probabilities are arranged in descending order from large to small. This results in, say, for short, the

doublePermutatedProbMatrix, where

 second column of doublePermutatedProbMatrix =

() () ()[]

() () ()[]

() () ()[] 

























NMNNMM

NMNNMM

NMNNMM

θθθθθθθθθ

θθθθθθθθθ

θθθθθθθθθ

,,,nextMax,,,,,nextMax,,,,nextMaxmin

,,,nextMax,,,,,nextMax,,,,nextMaxnextMax

,,,nextMax,,,,,nextMax,,,,nextMaxmax

212222111211

212222111211

212222111211

KKKK

M

KKKK

KKKK

 (5)

Step 2

Keeping track of the permutations that take us from the permutatedProbMatrix to the

doublePermutatedProbMatrix, we may construct the corresponding doublePermutatedStateMatrix.

For example, if we have the index vector

[]10987654321 (6)

of the original row ordering in permutatedProbMatrix, then the corresponding row ordering in both

the doublePermutatedProbMatrix and doublePermutatedStateMatrix may be, say,

 []97310682514 (7)

Now let undoPermutate be that function that rearranges the index vector (7) back the original index

vector, or, equivalently, (3) and (4)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

71
© The INFRARISK Consortium

 undoPermutate[doublePermutatedProbMatrix] = permutatedProbMatrix

 (8)

 undoPermutate[doublePermutatedStateMatrix] = permutatedStateMatrix.

Step 3.a

Set the vector stateVector as the first column of the doublePermutatedStateMatrix:

 stateVector = doublePermutatedStateMatrix(1, :); (9)

or, equivalently, depending on the programming language used,

 stateVector = doublePermutatedStateMatrix(1, All);

Likewise, set

P = 1;

For[i =1, i ≤ N,

P = P × doublePermutatedProbMatrix(i,1); (10)

 i++]

Store both the probability

()1P = P (11)

and the unsorted stateVector, see (8),

()1x = undoPermutate[stateVector] (12)

in a list
() (){ }11 , xP and insert that list entry into the list probabilitySort

 probabilitySort =
() (){ }{ }11 , xP . (13)

Step 3.b

Now the stateVector in (9) gives the damage state vector that has the highest probability of

occurring, while being arranged such that that the switching of the first damage state to the damage

state of the second entry in the first row of the doublePermutatedStateMatrix will have the next

highest probability; that is,

 stateVector(1) = doublePermutatedStateMatrix(1, 2); (14)

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

72
© The INFRARISK Consortium

has a corresponding next best probability of (10)

 P = [P/ doublePermutatedProbMatrix(1,1)] × doublePermutatedProbMatrix(1,2);

(15)

In order to reflect the switch operation (14) we initialize the switchVector as the base-line vector

 switchVector = zeros(N, 1) ; (16a)

which gives

switchVector = []000 K ; (16b)

after which we switch the first entry of this vector from 0 to 1, so as to reflect the switch operation

in (14):

 switchVector(1) = 1 ; (17a)

which gives

 switchVector = []001 K ; . (17b)

Also, we set the active switch location as

activeSwitch = 1. (18)

Store the adjusted probability (15), the adjusted state vector (14), the switch vector (17b), and the

active switch location (18) in a list

 { P , stateVector, switchVector, activeSwitch } (19)

and insert that list entry into the list Proposals

 Proposals = { { P , stateVector, switchVector, activeSwitch } }. (20)

N.B.: Instead of performing multiplications and divisions on the probabilities in (10) and (15), we also

may perform summations and subtractions from the corresponding log-probabilities; this will guard

against the potential underflow of the product of N probabilities for large N .

Step 4

We now have come to the core of the Probability Sort algorithm. This core consists of a While-loop

which runs until the desired number desiredNumber of probability sorted damage state vectors has

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

73
© The INFRARISK Consortium

been obtained or until the Proposals list is empty, signifying that the total state space has been

explored.

count = 1;

While[(Length[Proposals] > 0) OR (count < desiredNumber)

 Repeat Steps 5 and 6; (21)

count++]

Step 5.a

In each iteration of this While-loop the current Proposals list is updated by taking the list entry which

has the greatest path probability P ; that is, take that list

 { P, stateVector, switchVector, activeSwitch }. (22)

in Proposals where P is maximal.

Step 5.b

We then make available the entities in the list (18) for the algorithmic steps that will follow, by

setting

workP = P ;

workStateVector = stateVector ;

workSwitchVector = switchVector ; (23)

workActiveSwitch = activeSwitch ;

Step 5.c

After which we remove the list entry (18) from the Proposals list.

Step 5.d

We then set

()1count+P = P (24)

and the unsorted stateVector, see (8),

()1count +x = undoPermutate[stateVector] (25)

in a list
() (){ }1count1count , ++ xP and insert that list entry at the back of the list probabilitySort, so we

obtain the updated list:

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

74
© The INFRARISK Consortium

 probabilitySort =
() (){ } () (){ } () (){ }{ }1count1count2211 ,,,,,, ++ xxx PPP K . (26)

Step 5.e

Finally, we update the total probability coverage variable:

sumProb = sumProb +
()1count+P ; (26)

Step 6

Now, the candidate with the greatest path probability P , that is, (18), is allowed to generate

offspring before it gets moved to the probSort list. Each candidate can get a maximum of three

‘children’. As these children take the place of their progenitor in the Proposals list, they guarantee

that

a) all the remaining leaves of the event tree of the damage state space may still be explored,

and

b) that the next best probability is always in the updated Proposals list,

Offspring may be produced as follows:

Step 6.a

Flip active switch one layer deeper, to a more improbable state, if permissible given maximum layer

depth, and set that switch as the active switch and update the corresponding probability P and

stateVector; that is,

% first determine the number of possible damage states

% for the infrastructural element under consideration:

q = workActiveSwitch ;

M = length(doublePermutatedProbMatrix(q, :) ;

% elements in the switchVector take on values

% from 0 (base-line damage state with the highest probability)

% to M – 1 (damage state the lowest probability)

% So we have below that 0 ≤ r ≤ M – 1.

r = workSwitchVector(q) ;

If[r < M – 1,

% Set

 P = workP ;

 stateVector = workStateVector ;

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

75
© The INFRARISK Consortium

 switchVector = workSwitchVector

activeSwitch = workActiveSwitch ;

%Then update

 P = [P/ doublePermutatedProbMatrix(q, r)] × doublePermutatedProbMatrix(q, r +

1);

 stateVector(q) = doublePermutatedStateMatrix(q, r + 1) ;

 switchVector(q) = r + 1;

%Store the list

 offSpring1 = { P, stateVector, switchVector, workActiveSwitch } ;

% anywhere in the Proposals list,

Proposals = Insert [Proposals, offSpring1] ;

%and close the If-statement.

];

Step 6.b

If active switch is a first layer switch, then de-activate switch and position switch one step forward if

permissible given (a) row length or (b) a zero spot being available at that position, and activate that

switch for that forward position.

q = workActiveSwitch ;

If[(workSwitchVector(q) == 1) AND (q + 1 ≤ N) AND (workSwitchVector(q + 1) == 0),

% Set

 P = workP ;

 stateVector = workStateVector ;

 switchVector = workSwitchVector

activeSwitch = workActiveSwitch ;

%Then update

 P = [P/ doublePermutatedProbMatrix(q, 2)] × doublePermutatedProbMatrix(q, 1);

 P = [P / doublePermutatedProbMatrix(q + 1, 1)] × doublePermutatedProbMatrix(q + 1,

2);

 stateVector(q) = doublePermutatedStateMatrix(q, 1) ;

 stateVector(q + 1) = doublePermutatedStateMatrix(q + 1, 2) ;

 switchVector(q) = 0;

 switchVector(q + 1) = 1;

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

76
© The INFRARISK Consortium

 activeSwitch = q + 1;

%Store the list

 offSpring2 = { P, stateVector, switchVector, activeSwitch } ;

% anywhere in the Proposals list,

Proposals = Insert [Proposals, offSpring2] ;

%and close the If-statement.

];

Step 6.c

If the first entry in the switchVector is an available zero spot, then set that zero spot to a first level

active switch, and update the corresponding probability P and stateVector; that is,

If[switchVector(1) == 0,

% Set

 P = workP ;

 stateVector = workStateVector ;

 switchVector = workSwitchVector

activeSwitch = workActiveSwitch ;

%Then update

 P = [P/ doublePermutatedProbMatrix(1,1)] × doublePermutatedProbMatrix(1,2);

 stateVector(1) = doublePermutatedStateMatrix(1, 2) ;

 switchVector(1) = 1;

activeSwitch = 1;

%Store the list

 offSpring3 = { P, stateVector, switchVector, activeSwitch } ;

% anywhere in the Proposals list,

Proposals = Insert [Proposals, offSpring3] ;

%and close the If-statement.

];

Step 7:

Print the probability coverage value sumProb and STOP.

The list probabilitySort is now available to the user.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

77
© The INFRARISK Consortium

N.B.: We may set some probability criterion, say, crit, which the probabilities of the state vectors in

the probabilitySort list must exceed. This criterion then has to be enforced by way of an If-statement

in Steps 6.a, 6.b, and 6.c, as the Proposals list gets replenished by new offspring.

Moreover, this probability criterion crit may also prohibit the elements of the switch vector from the

(N – m)th element onwards to leave their optimal base-line states of 0, as the probabilities of switch

state 1 from the (N – m)th element onwards puts the probability of the probability P of the adjusted

base-line state vector

P = 1;

For[i =1, i ≤ N,

P = P × permutatedProbMatrix(i, 1);

 i++]

below the admissible threshold; that is,

 Pm < … < P2 < P1 < crit

where

P1 = [P/ doublePermutatedProbMatrix(N – m + 1,1)] × doublePermutatedProbMatrix(N – m + 1, 2);

P2 = [P/ doublePermutatedProbMatrix(N – m + 2,1)] × doublePermutatedProbMatrix(N – m + 1, 2);

…

Pm = [P/ doublePermutatedProbMatrix(N,1)] × doublePermutatedProbMatrix(N, 2);

So, under a probability criterion crit we may set the length of the switch vector in (16) to be of the

reduced length (N – m), rather than the full length N.

A.3 MATLAB-Code

% INPUTS

% total number of desired scenario proposals

desiredNumber = 10^6;

% probability cut-off

crit = log(10^-6);

% begin explosion(s)

input = [13];

% over-pressure value

P = 200;

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

78
© The INFRARISK Consortium

% grid definition

nX = 5;

nY = 5;

% INSERT PROBABILITY MAP

totalProbMap4 = probabilityMapUCL

% DO DOUBLE SORT ON PROBABILITY MAP

% total number of objects

N = nX * nY;

% sort within the rows

damageState = zeros(N, 4);

probability = zeros(N, 4);

for i = 1 : N

 [sortProb, index] = sort(totalProbMap4(i,:),'descend');

 probability(i,:) = sortProb;

 damageState(i,:) = index;

end

% sort over the rows using the third column

[sortedProb, index] = sortrows(probability,-3);

sortedState = damageState(index,:);

% indexRevert reverts second sort

% probability - sortedProb(indexRevert, :)

[~, indexRevert] = sort(index);

% SET-UP PROPOSAL AND STORAGE LISTS

% logarithm matrix of double sorted probabilities

logSortedProb = log(sortedProb);

% INITIALIZE PROPOSAL LIST

% 1. probability

firstProb = logSortedProb(:,1);

% 2. ordered state vector

firstState = sortedState(:,1);

orderedState = firstState(indexRevert);

% proposal probabilities; pre-allocate memory for better performance

proposalProb = zeros(desiredNumber, 1);

proposalProb(1) = exp(sum(firstProb));

% proposal state vectors; pre-allocate memory for better performance

proposalState = zeros(desiredNumber, N);

proposalState(1,:) = orderedState;

% INITIALIZE STORAGE LIST

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

79
© The INFRARISK Consortium

% 1. updated probability

logProb = sum(firstProb) - logSortedProb(1,1) + logSortedProb(1,2);

% 2. switch vector

switchVector = zeros(N,1);

switchVector(1) = 1;

% 3. active switch

activeSwitch = 1;

% 4. updated state vector

stateVector = firstState;

stateVector(1) = sortedState(1,2);

% storage; pre-allocate memory for better performance

% probabilities

storageProb = zeros(desiredNumber, 1);

storageProb(1) = exp(logProb);

% switch vector

storageSwitchVector = zeros(desiredNumber, N);

storageSwitchVector(1,:) = switchVector;

% active switch

storageActiveSwitch = zeros(desiredNumber, 1);

storageActiveSwitch(1) = activeSwitch;

% state vector

storageStateVector = zeros(desiredNumber, N);

storageStateVector(1,:) = stateVector;

% CORE OF ALGORITHM

sumProb = exp(sum(firstProb));

count = 2;

oldPointer = [];

pointer = 2;

flag = 1;

while flag == 1

 % Choose optimal proposal from storage list

 [prob, index] = max(storageProb);

 switchVectorWork = storageSwitchVector(index,:);

 activeSwitchWork = storageActiveSwitch(index);

 stateVectorWork = storageStateVector(index,:);

 % update proposals list

 proposalProb(count) = prob;

 orderedState = stateVectorWork(indexRevert);

 proposalState(count,:) = orderedState;

 % update probability coverage measure

 sumProb = sumProb + prob;

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

80
© The INFRARISK Consortium

 if mod(count,1000) == 0

 count

 sumProb

 end

 % break out of while-loop at the next iteration if necessary

 if count == desiredNumber

 flag = 0;

 end

 % update counter

 count = count + 1;

 % 'delete' optimal proposal from storage list

 storageProb(index) = 0;

 % set-up overwrite in storage list of the optimal proposal

 oldPointer = [oldPointer; index];

 activeSwitch = activeSwitchWork;

 switchVector = switchVectorWork;

 q = activeSwitch;

 m = switchVector(q);

 % switches go from 0 to M-1

 if m < 3

 % additional working material

 stateVector = stateVectorWork;

 % update prob

 logProb = log(prob);

 logProb = logProb - logSortedProb(q,m+1) + logSortedProb(q,m+2);

 % update switch vector

 switchVector(q) = switchVector(q) + 1;

 % update state vector

 stateVector(q) = sortedState(q,m+2);

 if ~isempty(oldPointer)

 index2 = oldPointer(1);

 drop = ones(length(oldPointer),1);

 drop(1) = 0;

 drop = logical(drop);

 oldPointer = oldPointer(drop);

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

81
© The INFRARISK Consortium

 else

 index2 = pointer;

 pointer = pointer + 1;

 end

 % fill storage matrices

 % probability

 storageProb(index2) = exp(logProb);

 % switch vector

 storageSwitchVector(index2,:) = switchVector;

 % active switch

 storageActiveSwitch(index2) = activeSwitch;

 % state vector

 storageStateVector(index2,:) = stateVector;

 end

 % restore switchVector

 switchVector = switchVectorWork;

 if (m == 1) && (q < N) && (switchVector(q + 1) == 0)

 % additional working material

 stateVector = stateVectorWork;

 % update prob

 logProb = log(prob);

 logProb = logProb - logSortedProb(q,2) + logSortedProb(q,1);

 logProb = logProb - logSortedProb(q+1,1) + logSortedProb(q+1,2);

 % update switch vector

 switchVector(q) = 0;

 switchVector(q+1) = 1;

 % update active switch

 activeSwitch = q + 1;

 % update state vector

 stateVector(q) = sortedState(q,1);

 stateVector(q+1) = sortedState(q+1,2);

 if ~isempty(oldPointer)

 index2 = oldPointer(1);

 drop = ones(length(oldPointer),1);

 drop(1) = 0;

 drop = logical(drop);

 oldPointer = oldPointer(drop);

 else

 index2 = pointer;

 pointer = pointer + 1;

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

82
© The INFRARISK Consortium

 end

 % fill storage matrices

 % probability

 storageProb(index2) = exp(logProb);

 % switch vector

 storageSwitchVector(index2,:) = switchVector;

 % active switch

 storageActiveSwitch(index2) = activeSwitch;

 % state vector

 storageStateVector(index2,:) = stateVector;

 end

 % restore switchVector

 switchVector = switchVectorWork;

 if switchVector(1) == 0

 % additional working material

 stateVector = stateVectorWork;

 % update prob

 logProb = log(prob);

 logProb = logProb - logSortedProb(1,1) + logSortedProb(1,2);

 % update switch vector

 switchVector(1) = 1;

 % update active switch

 activeSwitch = 1;

 % update state vector

 stateVector(1) = sortedState(1,2);

 if ~isempty(oldPointer)

 index2 = oldPointer(1);

 drop = ones(length(oldPointer),1);

 drop(1) = 0;

 drop = logical(drop);

 oldPointer = oldPointer(drop);

 else

 index2 = pointer;

 pointer = pointer + 1;

 end

 % fill storage matrices

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

83
© The INFRARISK Consortium

 % probability

 storageProb(index2) = exp(logProb);

 % switch vector

 storageSwitchVector(index2,:) = switchVector;

 % active switch

 storageActiveSwitch(index2) = activeSwitch;

 % state vector

 storageStateVector(index2,:) = stateVector;

 end

end

A.4 A Pen and Paper Algorithmic Run

We now give a pen and paper algorithmic run of the proposed Probability Sort algorithm for state

vectors having probabilities greater or equal to crit =
610−

, for the most simple non-trivial case

where we have 3=N elements each having 3=M possible damage states. This in order to give

the reader/programmer a concrete sense of the here proposed algorithm.

Let























=

1000000

1

1000000

999

1000000

999000
10000

1

10000

99

10000

9900
100

1

100

9

100

90

probMatrix (1)

and let the state matrix be such that its column is equivalent to the switch vector and its subsequent

switching layers:

















=

210

210

210

xstateMatri (2)

Then ML proposal []()1
000 has a probability of (1) and (2)

()

12

6
1

10

10890109

1000000

999000

10000

9900

100

90 ×
=××=P

So, we set the ProbabilitySort list as

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

84
© The INFRARISK Consortium

 ProbabilitySort = []()















 × 1

12

6

000,
10

10890109

The next best state vector in terms of being the next most probable state vector then is given as:

[]() []()
12

5
21

10

10890109
,00000

×
→ 1 ,

as (1) and (2)

()

12

5
2

10

10890109

1000000

999000

10000

9900

100

9 ×
=××=P ,

And where the bold face underlined switch state points to the active switch position. So, we set the

Proposals list as

 Proposals = []()















 × 2

12

5

00,
10

10890109
1

In the first iteration of the While-loop we then insert the most probable of the proposals in the

probability sort list

 ProbabilitySort = []() []()















 ×







 × 2

12

5
1

12

6

001,
10

10890109
,000,

10

10890109

After we clean up the Proposals list as

 Proposals = { }

We then go through the three offspring checkpoints:

[]()

[]()

[]()

()[]()
n.a.,001,1

10

10890109
,00

10

1098901
,00

00
12

4
4

12

5
3

2

reject

×

×

→ 1

2

1

So as we store the proposals []()3
002 and []()4

00 1 into the Proposals list with the

corresponding probabilities

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

85
© The INFRARISK Consortium

 Proposals = []() []()















 ×







 × 4

12

4
3

12

5

00,
10

10890109
,00,

10

1098901
12

In the next While-iteration we then have the most probable state vector []()3
002 and add it

together with its probability to the probability sort list, as we remove that entry from the proposals

list:

ProbabilitySort =

[]()

[]()

[]()











 ×







 ×











 ×

3

12

5

2

12

5

1

12

6

002,
10

1098901

,001,
10

10890109

,000,
10

10890109

Proposals = []()















 × 4

12

4

00,
10

10890109
1

We have in this While-iteration

[]()

[]()

[]
()[]()reject

reject

reject

001,2

00

00

00
3

1

3

2 →

So, we have at the end of the While-iteration proposals list is not replenished.

Proposals = []()















 × 4

12

4

00,
10

10890109
1

In the next While-iteration we then have the most probable state vector []()4
00 1 and add it

together with its probability to the probability sort list, as we remove that entry from the proposals

list:

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

86
© The INFRARISK Consortium

ProbabilitySort =

[]()

[]()

[]()

[]()











 ×







 ×







 ×











 ×

4

12

4

3

12

5

2

12

5

1

12

6

010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

 Proposals = { }

We have in this While-iteration the parent []()4
00 1 , which begets the offspring

[]()

[]()

[]()

[]()
12

3
7

12

3
6

12

4
5

4

10

10890109
,01

10

10890109
,00

10

108991
,00

00

×

×

×

→

1

1

2

1

So, we have at the end of the While-iteration the replenished proposals list

 Proposals =

[]()

[]()

[]()











 ×







 ×











 ×

7

12

3

6

12

3

5

12

4

01,
10

10890109

,00,
10

10890109

,00,
10

108991

1

1

2

In the next While-iteration we then have as the most probable state vector a choice between

[]()6
00 1 and []()7

011 . We may choose either of these proposals and add it together with its

probability to the probability sort list, as we remove that entry from the proposals list, say

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

87
© The INFRARISK Consortium

 ProbabilitySort =

[]()

[]()

[]()

[]()

[]()











 ×







 ×







 ×







 ×











 ×

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

 Proposals =

[]()

[]()











 ×











 ×

7

12

3

5

12

4

01,
10

10890109

,00,
10

108991

1

2

We have in this While-iteration the parent []()6
00 1 , which begets the offspring

 []()

[]()

[]()

[]()
12

2
9

12

3
8

6

10

10890109
,10

n.a.,000

10

10891
,00

00

×

×

→

1

1

2

1
reject

So, we have at the end of the While-iteration the replenished proposals list

 Proposals =

[]()

[]()

[]()

[]()











 ×







 ×







 ×











 ×

9

12

2

8

12

3

7

12

3

5

12

4

10,
10

10890109

00,
10

10891

01,
10

10890109

,00,
10

108991

1

2

1

2

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

88
© The INFRARISK Consortium

In the next While-iteration we then have as the most probable state vector []()7
011 . We add it

together with its probability to the probability sort list, as we remove that entry from the proposals

list:

 ProbabilitySort =

[]()

[]()

[]()

[]()

[]()

[]()











 ×







 ×







 ×







 ×







 ×











 ×

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

Proposals =

[]()

[]()

[]()











 ×







 ×











 ×

9

12

2

8

12

3

5

12

4

10,
10

10890109

,00,
10

10891

,00,
10

108991

1

2

2

We have in the next While-iteration the parent []()7
011 , which begets the offspring

 []()

[]()

()[]()

()[] n.a.,011,1

n.a.,01,10

10

1098901
,01

01

12

3
10

7

reject

reject

×

→

2

1

So, we have at the end of the While-iteration the replenished proposals list

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

89
© The INFRARISK Consortium

Proposals =

[]()

[]()

[]()

[]()











 ×







 ×







 ×











 ×

10

12

3

9

12

2

8

12

3

5

12

4

01,
10

1098901

,10,
10

10890109

,00,
10

10891

,00,
10

108991

2

1

2

2

In the next While-iteration we then have as the most probable state vector []()10
012 . We add it

together with its probability to the probability sort list,

 ProbabilitySort =

[]()

[]()

[]()

[]()

[]()

[]()

[]()











 ×







 ×







 ×







 ×







 ×







 ×











 ×

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

as we remove that entry from the proposals list. We have in this While-iteration the parent

[]()10
012 , which begets no offspring

 []()

[]()

()[]()

()[]reject

reject

reject

011,2

01,10

01

01
10

3

2 →

So, we have at the end of the While-iteration the updated proposals list

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

90
© The INFRARISK Consortium

 Proposals =

[]()

[]()

[]()











 ×







 ×











 ×

9

12

2

8

12

3

5

12

4

10,
10

10890109

,00,
10

10891

,00,
10

108991

1

2

2

In the next While-iteration we then have as the most probable state vector []()5
00 2 . We add it

together with its probability to the probability sort list,

 ProbabilitySort =

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()











 ×







 ×







 ×







 ×







 ×







 ×







 ×











 ×

5

12

4

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

020,
10

108991

,012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

as we remove that entry from the proposals list. We have in this While-iteration the parent

[]()5
00 2 , which begets the offspring

 []()

[]()

[]()

[]()
12

3
11

5

10

108991
,02

n.a.,00

n.a.,00

00

×

→

1

1

3

2
reject

reject

So, we have at the end of the While-iteration the updated and replenished proposals list

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

91
© The INFRARISK Consortium

 Proposals =

[]()

[]()

[]()











 ×







 ×











 ×

11

12

3

9

12

2

8

12

3

02,
10

108991

,10,
10

10890109

,00,
10

10891

1

1

2

In the next While-iteration we then have as the most probable state vector []()9
101 . We add it

together with its probability to the probability sort list, as we remove that entry from the proposals

list:

 ProbabilitySort =

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()











 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×











 ×

9

12

2

5

12

4

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

101,
10

10890109

,020,
10

108991

,012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

We have in this While-iteration the parent []()9
101 , which begets the offspring

 []()

[]()

[]()

()[]()
n.a.,101,1

10

10890109
,10

10

1098901
,10

10
12

13

12

2
12

9

reject

×

×

→ 1

2

1

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

92
© The INFRARISK Consortium

So, we have at the end of the While-iteration the updated and replenished proposals list

 Proposals =

[]()

[]()

[]()

[]()











 ×







 ×







 ×











 ×

13

12

1

12

12

2

11

12

3

8

12

3

10,
10

10890109

,10,
10

1098901

,02,
10

108991

,00,
10

10891

1

2

1

2

In the next While-iteration we then have as the most probable state vector []()12
102 . We add it

together with its probability to the probability sort list,

 ProbabilitySort =

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()











 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×











 ×

12

12

2

9

12

2

5

12

4

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

102,
10

1098901

,101,
10

10890109

,020,
10

108991

,012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

93
© The INFRARISK Consortium

as we remove that entry from the proposals list. We have in this While-iteration the parent

[]()12
102 , which begets no offspring

[]()

[]()

[]()

()[]()reject

reject

reject

101,2

10

10

10
12

1

3

2 →

So the updated proposals list at the end of the While-iterations is

 Proposals =

[]()

[]()

[]()











 ×







 ×











 ×

13

12

1

11

12

3

8

12

3

10,
10

10890109

,02,
10

108991

,00,
10

10891

1

1

2

In the next While-iteration we then have as the most probable state vector []()11
021 . We add it

together with its probability to the probability sort list,

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

94
© The INFRARISK Consortium

ProbabilitySort =

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()











 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×











 ×

11

12

3

12

12

2

9

12

2

5

12

4

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

021,
10

108991

,102,
10

1098901

,101,
10

10890109

,020,
10

108991

,012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

as we remove that entry from the proposals list. We have in this While-iteration the parent

[]()11
021 , which begets the offspring

[]()

[]()

()[]()

()[]()
n.a.,021,1

n.a.,01,20
10

10999
,02

02

12

3
14

11

reject

reject

×

→

2

1

So the updated proposals list at the end of the While-iterations is

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

95
© The INFRARISK Consortium

 Proposals =

[]()

[]()

[]()











 ×







 ×











 ×

14

12

3

13

12

1

8

12

3

02,
10

10999

,10,
10

10890109

,00,
10

10891

2

1

2

In the next While-iteration we then have as the most probable state vector []()12
10 1 . We add it

together with its probability to the probability sort list,

 ProbabilitySort =

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()

[]()











 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×







 ×











 ×

13

12

1

11

12

3

12

12

2

9

12

2

5

12

4

10

12

3

7

12

3

6

12

3

4

12

4

3

12

5

2

12

5

1

12

6

110,
10

10890109

,021,
10

108991

,102,
10

1098901

,101,
10

10890109

,020,
10

108991

,012,
10

1098901

,011,
10

10890109

,100,
10

10890109

,010,
10

10890109

,002,
10

1098901

,001,
10

10890109

,000,
10

10890109

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

96
© The INFRARISK Consortium

as we remove that entry from the proposals list. We have in the next While-iteration the parent

[]()13
10 1 , which begets the offspring

 []()

[]()

()[]()

[]()
12

16

12

15

13

10

890109
,11

n.a.,1,100

10

108991
,10

10

1

2

1
reject

×

→

So, we have at the end of the While-iteration the updated and replenished proposals list

 Proposals =

[]()

[]()

[]()

[]()



















 ×







 ×











 ×

16

12

15

12

14

12

3

8

12

3

11,
10

890109

,10,
10

108991

,02,
10

10999

,00,
10

10891

1

2

2

2

All the remaining proposals have probabilities smaller than
610−

, which is why we (arbitrarily)

terminate this pend-and-paper run.

Note that we build in the (arbitrary) If-statement for crit =
610−

 into the algorithmic Step 6.a, 6.b,

and 6.c, then the above Proposals list would have been empty and the algorithm would have

terminated automatically at this point.

We give below the rest of the event-tree coverage without the corresponding probabilities.

[]()

[]()

[]()

[]()17

8

20

000

00

00

1

1

3

2
reject

reject

→

[]()

[]()

()[]()

()[]()reject

reject

reject

021,2

01,20

02

02
14

3

2 →

[]()

[]()

()[]()

[]()18

15

12

1,100

10

10

1

3

2
reject

reject

→

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

97
© The INFRARISK Consortium

[]()

[]()

()[]()

()[]()reject

reject

111,1

11,10

11

11

19

16

2

1 →

[]()

[]()

[]()

()[]()reject
201,1

20

20

20
21

20

17
1

2

1 →

[]()

[]()

()[]()

()[]()reject

reject

121,1

11,20

12

12

22

18

2

1 →

[]()

[]()

()[]()

()[]()reject

reject

reject

111,2

11,10

11

11
19

3

2 →

[]()

[]()

[]()

()[]()reject

reject

reject

201,2

20

20

20
20

1

3

2 →

[]()

[]()

()[]()

[]()24

23

21

21

1,200

20

20

1

2

1
reject

→

[]()

[]()

()[]()

()[]()reject

reject

reject

121,2

11,20

12

12
22

3

2 →

[]()

[]()

()[]()

[]()25

23

22

1,200

20

20

1

3

2
reject

reject

→

[]()

[]()

()[]()

()[]()reject

reject

211,1

21,10

21

21

26

24

2

1 →

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

98
© The INFRARISK Consortium

[]()

[]()

()[]()

()[]()reject

reject

221,1

21,20

22

22

27

25

2

1 →

[]()

[]()

()[]()

()[]()reject

reject

reject

211,2

21,10

21

21
26

3

2 →

 []()

[]()

()[]()

()[]()reject

reject

reject

221,2

21,20

22

22
27

3

2 →

And we see that the algorithm covers all of the 2733 ==N
M leaves in our event tree.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

99
© The INFRARISK Consortium

APPENDIX B: DELPHI PANELS

A stress testing Delphi panel should lead to the formulation of a set of stress scenarios for road/rail

networks. Comprehensive identification of relevant scenarios is critical, because scenarios excluded

in this task will not be included in further analysis and may result in an incorrect estimation of risk.

To minimise the possibility of this happening it is important that experts in each area are involved, as

argued by Adey et al. (2016). In this appendix, some background about Delphi panels, its

composition, its size, its working methods, etc. is given.

The Delphi method is a method for knowledge elicitation which relies on a panel of independent

experts (Rowe G., Wright G., 2001). The basic principle of Delphi is that forecasts from a structured

group of experts are more accurate than those from unstructured groups or individuals. The

properties of the different group communication techniques are presented in Table B.1 (The Delphi

Method: Techniques and Applications, 2002). Depending on the chosen technique and number of

items addressed the survey can take in average from 1 week to 6 months and may cost from 1.000

to 1.5 million euro.

There are few key characteristics of Delphi: regular feedback of individual contributions of

information and knowledge; assessment of the group judgment or' view; opportunity for individuals

to revise views; and anonymity of the participants (The Delphi Method: Techniques and Applications,

2002). There are different ways how Delphi can be applied in the framework of these main

characteristics, ranging from qualitative to quantitative, to mixed.

The advantages of using Delphi:

• Allows freely expressions of opinions and ideas by a large number of participants.

• Discussions and results are not influenced by one leader.

• It is convenient as it allows participants who are geographically distanced, to work from own

home or office.

• Participants have an opportunity to think deeper and gather more information on issue

between the rounds.

• Allows long-term thinking (gives view on future) and in the same time orientated towards

actions.

• It shows well performance when the issue is complex.

• Highlight a consensus decision (if it is reached or not).

• Provides a transparent and democratic technique.

Disadvantages:

• It takes time for organisers and can be expensive to run the survey.

• May be difficult to motivate participants.

• Some participants may drop out during the process (especially after the first round).

• Results may be influenced by the set of participants involved.

• Will not build relationships or generate a dialogue between participants.

• There is a danger of ignoring a single opinion that might have of special value.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

100
© The INFRARISK Consortium

Rowe and Wright (2001) suggested to use the following principal to receive a better result:

• Knowledgeable experts

• Heterogeneous experts (who focus in the field of research area)

• Groups of 5 to 20 experts

• Mean or median estimates of the panel and rationales of these estimate for feedback.

• Rounds should continue until stable results arrive (usually 3 rounds are enough).

Gibbs and others (2001) suggested to invite as experts the participants who fulfill such criteria as:

Participants have published articles in the last five years on the topic of research; Participants have

taught courses about these topics; or Participants' primary employment responsibilities are related

to these areas. According to the some authors (Delbecq et al., 1975; Murphy et al., 1998) this gives a

wide perspective and range of alternatives that will lead to better performance. The number of

experts which can give the best accuracy is, however, uncertain. Some of the publications suggested

that there is no clear difference in accuracy (Brockhoff, 1975; Boje, Murnighan, 1982; Powell, 2003).

Participants may have different arguments of their opinions even if the opinions are similar. It can

give additional information and therefore should be included together with the feedback from

estimates outside the quartiles. Rowe and Wright (2001) pointed out that the first round is more

valuable as it is unstructured. It gives the experts the possibility to specify key issues and formulate

relevant and balanced sets of questions. However, a lot of studies use structured questionnaires in

the first stage.

INFRARISK

Deliverable D6.2 Stress Test Framework for Systems

101
© The INFRARISK Consortium

Group Communication Techniques

 Conference

Telephone

Call

Committee

Meeting

Formal Conference

or Seminar

Conventional Delphi Real-Time Delphi

Effective Group

Size

Small Small to Medium Small to Large Small to Large Small to Large

Occurrence of

Interaction by

Individual

Coincident

with group

Coincident with

group

Coincident with

group

Random Random

Length of

Interaction

Short Medium to Long Long Short to Medium Short

Number of

Interactions

Multiple, as

required by

group

Multiple,

necessary time

delays between

Single Multiple, necessary

time delays

between

Multiple, as required

by individual

Normal Mode

Range

Equality to

chairman

control

(flexible)

Equality to

chairman control

(flexible)

Presentation

(directed)

Equality to monitor

control (structured)

Equality to monitor

control or group

control and no

monitor (structured)

 Conference

Telephone

Call

Committee

Meeting

Formal Conference

or Seminar

Conventional Delphi Real-Time Delphi

Principal Costs Communica

tions

• Travel

• Individual's

Time

• Travel

• Individual's Time

• Fees

• Monitor Time

• Clerical

• Secretarial

• Communications

• Computer Usage

 Time-urgent

consideratio

ns

Forced delays Forced delays Time-urgent

considerations

Other

Characteristics

• Equal flow of information to

and from all

• Can maximize psychological

effects

Efficient flow of

information from

few to many

• Equal flow of information to and from all

• Can minimize psychological effects

• Can minimize time demanded of

respondents or conferees

Table B.1: The Delphi Method: Techniques and Applications

