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Executive Summary 

Probability theory has as its subject matter the assignment of quantitive measures of plausibility (i.e. 

probabilities) to logical propositions like, for example, “this bridge will fail” or “this bridge will not 

fail”. Probability theory allows us to compute outcome probability distributions for a given (stress) 

scenario. Outcome probability distributions are the information carriers of our probability 

theoretical analyses as they (1) enumerate all the possible outcomes under a given scenario/decision 

and (2) assign probabilities to each of these outcomes.  

 

Decision theory has as its subject matter the choosing between alternative actions. Each course of 

action will lead us to some state of the world which corresponds with some outcome probability 

distribution. So (1) once we have enumerated all the viable courses of actions, we (2) may proceed 

to construct the outcome probability distributions that correspond with each of these actions, and 

(3) based on the maximization of some measure which is defined on these outcome probability 

distributions choose the optimal course of action.  

 

The most well-known decision theories are the expected outcome theory and the expected utility 

theory. Elements of these decision theories are used as a matter of course in probabilistic cost-

benefit analyses. This despite the fact that the behavioural economics community, consisting of 

economists and experimental psychologists, have declared these decision theories to be 

fundamentally flawed, as they point to psychological experiments that would seem to indicate that 

human decision making does not adhere to the maximization of expectation values of either 

outcome probability distributions or utility probability distributions.  

 

In this deliverable a new decision theory is introduced that resolves this apparent inconsistency 

between probabilistic cost-benefit practice and the findings of the behavioural economists. The 

Bayesian decision theory is neo-Bernoullian in that it rederives Bernoulli’s utlity function by way of a 

consistency proof. But it differs from Bernoulli’s original utility in that it proposes that the 

expectation value indeed need not be the most appropriate criterion of choice for our actions.  

 

First we will apply the Bayesian decision theory in order to evaluate the effects of the stress 

scenarios in transport systems example which was discussed in D6.2. We then will work out its 

practical implication, by comparing the investment willingness in hazard prevention measures under 

the different decision theories.  It will also be discussed how the Bayesian decision theory may 

resolve some of the decision theoretical inconsistencies, which then will lead us to a principled 

recommendation for the computation of disproportionality factors of the cost-benefit methodology. 

 

The research results of this deliverable are relevant for all those, be they infrastructural managers or 

not, that wish to make a probabilistic cost-benefit analysis.  
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1.0 INTRODUCTION 

We recommend the Bayesian decision theory as the decision-making protocol of the stress test 

framework because the decision theoretical inconsistencies  of the expectation value as a measure 

of risk is so problematic – in that predicted decisions do not correspond with observed decisions – 

that it has given rise to the paradigm of behavioral economics
1
. The Bayesian decision theory 

proposes as a solution to these inconsistencies (1) a re-instatement of Bernoulli’s original utility 

function, and (2) the use of an alternative measure of risk.  

 

First we will apply the Bayesian decision theory in order to evaluate the effects of the stress 

scenarios in transport systems example which was discussed in D6.2 (van Erp et al., 2016), in order 

to give the reader a general sense of the decision making protocol that is proposed in D6.3.  

 

Then we will proceed to formally derive the Bayesian decision theory. In the Bayesian decision 

theory irisk is operationalized as some position measure on an outcome probability distribution. As 

we have to navigate our action space, then we will typically choose that action that maximizes the 

position of a given outcome probability distribution (if gains are represented by positive numbers 

and losses by negative numbers, that is). Also, it is found that the conversion of objective monies to 

their subjective worth (as the worth of a given sum of money may differ from one person to 

another, depending on their current asset position), is best done by way of Bernoulli’s utility 

function, as this utility function (together with Stevens’ power law) is the only consistent utility 

function. 

 

We then work out the practical implications of the proposed Bayesian decision theory, by comparing 

the investment willingness in hazard prevention measures under the proposed Bayesian decision 

theory with the investment willingness under the expected outcome theory and expected utility 

theory. The decision theoretical scenario chosen for this toy problem is based on investment choices 

Dutch policy makers were faced with following the great Dutch flooding in 1953. This discussion will 

lead us to a practical proposal on how to model the Disproportionality Factors of cost-benefit 

analyses.  

 

Finally, it will be discussed how the Bayesian decision theory may resolve some of the decision 

theoretical inconsistencies, as we discuss the rational basis for the fact that our common sense 

strongly suggests High Impact Low Probability (HILP) events in some sense are much ‘riskier’ than 

Low Impact High Probability (LIHP) events, even if the probability times consequence summation 

gives us the same expectation values for both types of events.   

                                                           
1
 Behavioral economics is a multidisciplinary field which combines experimental psychology with economics 

and which has as one of its central tenets that human decision making cannot be captured by simple 

mathematical maximization principles. 
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2.0 EVALUATING THE EFFECT OF STRESS SCENARIOS IN TRANSPORT SYSTEMS  

In this chapter we will apply the decision making protocol to the simple bridge system example 

which is given in D6.2 (van Erp et al., 2016). In this example a stress test involving increased river 

discharge values is performed for a 5-bridge system which consists of two types of bridges. We will 

use the decision making protocol to guide us in our decision making as to which components to 

strengthen in the hypothetical bridge system. 

 

2.1 Risk Definition 

As already stated in D6.2, we assume that risk is some function of both consequences, 

{ }nxx ,,1 K=x , and the probabilities of these consequences, { }npp ,,1 K=p ;, that is,  

 

 Risk = ( )px,f .         (2.1)   

 

Now, it will be argued in Chapter 3 that the risk function ( )px,f  may be interpreted as a position 

measure on the corresponding outcome probability distribution:  

 

 ( )













=

.,

,,

,,

22

11

nn xp

xp

xp

p
M

x          (2.2) 

 

where the { }nxx ,,1 K=x  are mapped on the x-axis and the { }npp ,,1 K=p  are mapped on the y-

axis. For example, if we take as our risk function  ( )px,f  the expectation value: 

 

 ( ) ( )XEpxf
n

i

ii ==∑
=1

,px ,       (2.3)   

 

then we have that our risk index is a measure of the position of the most-likely scenario (of losses). 

Now, given the ubiquitousness of (2.3) as a definition for risk, there must be some merit in taking 

the most-likely loss-scenario as our risk measure.  

 

An alternative, more cautious position is taken by the return period methodology, which takes as its 

risk index the measure the position of an unlikely (to be on the safe side of things) worst-case 

scenario of some hazard intensity magnitude:   

 

( ) ( ) ( )XstdkXEf +=px, ,       (2.4) 

 

where 
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 ( ) ( )
2

11

2

1

, 







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===

n

i

ii

n

i

ii

n

i

ii pxpxXstdpxXE ,  (2.5) 

 

and k  is the sigma-level that will give us the desired upper percentile value.  

 

In Chapter 3 it is proposed that the position measure that takes into account the worst, most-likely, 

and best case scenarios: 

 

 ( ) ( ) ( ) ( )
3

,
XUBXEXLB

f
++

=px .      (2.6) 

 

Now, there are as of yet no guiding mathematical principles by which to choose between  the 

alternative risk indices (20.3), (2.4), and (2.6). We have only common sense principles like those 

expounded in Chapter 3 to guide us, when it comes to this decision theoretical degree of freedom  

(van Erp et al., 2016a). 

 

2.2 Risk Minimisation 

An infrastructure stress test is an analysis conducted under unfavorable scenarios which is designed 

to determine whether there are unacceptable infrastructure related risks. These tests are meant to 

detect objects that if “strengthened” through the execution of preventive interventions will greatly 

decrease the infrastructure related risk (Adey, 2016). So the strengthening of one or more 

infrastructural objects are the alternative actions which are open to the road manager, relative to a 

status quo where he only performs regular maintenance. Moreover, the road manager will have 

some budget constraint under which he has to decide whether or not to strengthen additional 

infrastructural objects or not.  

 

If we enumerate all the possible actions that a road manager might take as the set  

 

{ }mAAA ,,, 21 K .        (2.7) 

 

Then we have, for a given stress scenario S , that each action kA  will map to a specific conditional 

outcome probability distribution: 

 

 ( )













=

.,

,,

,,

,|
22

11

kk nn

k

xp

xp

xp

ASp
M

x        (2.8) 

 

where kn  is the number of possible outcomes under the kth action kA . Now, we may compute for 

each of these outcome probability distributions (10.8), depending on our risk appetite, any of the 
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risk indices (2.3), (2.4), and (2.6). For a given choice of risk index, the road manager then chooses 

that decision  

 

 { }mk AAAA ,,, 21 K∈  

 

which has the lowest risk (index) value of its corresponding outcome probability distribution (

 

So, for a given stress test scenario 

2003), all that needs to be done 

 

1. An enumeration of all the possible action

2. The construction of the corresponding outcome probability distributions

on the stress scenario S

3. A commitment to one of the risk indices 

4. A minimization of the chosen risk index

5.  

For an actual demonstration of this approach, see 

 

2.3 Applying the Decision-Making Protoco

In Chapter 3 of D6.2 a simple example 

bridges. We again consider this

2.1. 

 

  

 Decision

 

.6). For a given choice of risk index, the road manager then chooses 

       

has the lowest risk (index) value of its corresponding outcome probability distribution (

for a given stress test scenario S , in this straightforward decision theoretical approach (Jaynes, 

 is: 

n enumeration of all the possible action (2.7), 

he construction of the corresponding outcome probability distributions

S , 

commitment to one of the risk indices either (2.3), (2.4), or (2.6), 

chosen risk index over the set of possible actions (

For an actual demonstration of this approach, see the following section, as well as

Making Protocol 

a simple example is given of how a stress test may be done a simple system of 

is road network with 5 components (bridges over a river), Fig

Figure 2.1: Bridge System 

Decision-Making Protocol 

10 
 

.6). For a given choice of risk index, the road manager then chooses 

 (2.9) 

has the lowest risk (index) value of its corresponding outcome probability distribution (2.8). 

in this straightforward decision theoretical approach (Jaynes, 

he construction of the corresponding outcome probability distributions (2.8), conditional 

over the set of possible actions (2.9). 

, as well as Chapter 4.   

may be done a simple system of 

road network with 5 components (bridges over a river), Figure 
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We have that bridges 1, 2, and 3 are bridges of type I and bridges 4 and 5 of type II. Each type of 

bridge has its own characteristics and, as a consequence, will behave differently under different 

scour conditions; that is, bridges of type I are considered to be more resistant to scour than those of 

type II. The scour load for a given bridge is considered to be some limit state function of some 

discharge value Q   measured in the vicinity of the bridge (e.g. upstream, downstream, etc.).In what 

follows we will assume some, say, precipitation stress scenario that will lead to elevated flood 

discharges throughout the river; that is, elevated flood discharges are predicted in the vicinity of the 

bridges as in Figure 2.2.  

 

 

 

 

 

For both bridge types in Figure 2.2, the probability of being in damage state 0=i (undamaged state) 

is modelled as 

 

( ) ( )








Φ−==

β

α
βαπ 1

1

ln
1,,|0

Q
Qi ;      (2.10a) 

 

the probability of being in damage state 1=i  is a modelled as 

 

 ( ) ( ) ( )








Φ−








Φ==

β

α

β

α
βααπ 21

21

lnln
,,,|1

QQ
Qi ;    (2.10b) 

 

the probability of being in damage state 2=i  is 

Figure 2.2: River Discharge Stress Scenario 
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 ( ) ( ) ( )








Φ−








Φ==

β

α

β

α
βααπ 32

32

lnln
,,,|2

QQ
Qi ;   (2.10c) 

 

the probability of being in damage state 3=i  is 

 

( ) ( )








Φ==

β

α
βαπ 3

3

ln
,,|3

Q
Qi ,      (2.10d) 

 

The actual parameters  1α , 2α , 3α , and β  in (2.10) are the fragility parameters of the fragility 

curves  

 

 ( ) ( )








Φ=

β

α
βα i

i

Q
QiP

ln
,,| ,  for 3,2,1=i ,   (2.11) 

 

where it is understood that the fragility parameters will differ for each type of bridge.   

 

2.3.1 Outcome Probability Distribution Under Decision To Do Nothing 

Let us assume that for the bridge of type I we have 10 discharge values jQ , for 10,,1 K=j . Let us 

also assume that we sample the limit state function for each discharge value and each damage state, 

starting from damage state 1=i , 100=N  times in order to determine each time the number of 

realizations ijZ  that are in the pertinent damage states 1=i , 2=i  , and 3=i , respectively. In 

Table 2.1 we give a possible realization of such a sampling exercise. 

 

 
jQ  jZ1  jZ2  jZ3  

j = 1 10 0 0 0 

j =2 39 10 0 0 

j =3 78 30 3 0 

j =4 156 60 10 0 

j =5 312 100 30 3 

j =6 625 100 60 10 

j =7 1250 100 100 30 

j =8 2500 100 100 60 

j =9 5000 100 100 100 

j =10 10000 100 100 100 

Table 2.1: Type I Bridge (discharge values and associated number of damage state realisations) 

 

Based on the data in Table 2.1, we can specify the fragility-parameter likelihood model (Shinozuka et 

al., 2003): 
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( )
( ) ( )
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ln
1
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ijij
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L
β

α

β

α
βααα ,   (2.12) 

 

where Φ  is the symbol of the cumulative standard normal distribution. If we assign the following 

non-informative  prior to the fragility-parameters (Jaynes, 1968) 

 

 ( )
βααα

βααα
321

321

1
,,, ∝p ,      (2.13) 

 

Then we may combine (2.12) and (2.12) into the posterior probability distribution (Jaynes, 2003) 

 

      ( )
( ) ( )
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Z
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Dp
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α

β

α

βααα
βααα  (2.14) 

 

where the data D  consists of the set of inputted flow discharges { }
jQ  and the set of observed 

number of failure realisations { }
ijZ  in  100=N  trials, for 3,2,1=i  and 10,,1 K=j , as shown in 

Table 2.1 and Table 2.2. 

 

By way of the Nested Sampling algorithm (see D6.2, Chapter 6), we may obtain a univariate 

representation for the fragility parameter probability distribution (2.14) which allows us to evaluate 

the mean and standard deviation vectors: 

 

 99.107
1

=αµ ,    62.421
2

=αµ ,    181651
3

.µ
α

= ,    7008.0=bµ ,  (2.15a) 

 81.5
1

=ασ ,       54.21
2

=ασ ,        1166
3

.
α

=σ ,    0273.0=bσ .   (2.15b)  

 

As the probabability distribution (2.14) cannot be easily factorized in the product of four 

independent probability dsitributions, one will need to use the univariate Nested Sampling 

representation of (2.14), say, 

 

 ( )11321 ,I Type,|,,, ADapNS βαα ,      (2.16) 

 

where 1D  is as in Table 2.1 and (2.16) itself is a collection of probability weighted fragility parameter 

vectors, in order to take into account the fragility parameter uncertainty and 1A  is the ‘action’ to 

keep the status quo. 

 

Now, in our hypothetical stress test problem of D6.2, we have that the type II are more vulnerable to 

scour. For the bridge of type II, we use the same 10 discharge values jQ  that were used in Table 2.1, 

where we sample from the same limit state function for each discharge value and each damage 

state, in order to determine each time the number of realizations ijZ  that are in the pertinent 
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damage states 1=i , 2=i  , and 3=i , respectively. In Table 3.2 we give a possible realization of 

such a sampling exercise.  

 

 
jQ  jZ1  jZ2  jZ3  

j = 1 10 10 0 0 

j =2 39 30 3 0 

j =3 78 60 10 0 

j =4 156 100 30 3 

j =5 312 100 60 10 

j =6 625 100 100 30 

j =7 1250 100 100 60 

j =8 2500 100 100 100 

j =9 5000 100 100 100 

j =10 10000 100 100 100 

Table 2.2: Type II Bridge (discharge values and associated number of damage state realisations) 

 

Note that the difference in the number of ijZ  realizations, relative to Table 3.1, are due to the fact 

that the damage state model for a type II bridge will set all the damage state thresholds lower, as 

these types of bridges are more vulnerable to scour loading. 

 

By way of the Nested Sampling algorithm (see D6.2, Chapter 6), we may obtain a univariate 

representation for the fragility parameter probability distribution (2.14) which allows us to evaluate 

the mean and standard deviation vectors,  and the correlation-matrices of the fragility parameters: 

 

 73.48
1

=αµ ,    01.210
2

=αµ ,    58861
3

.µ
α

= ,    7626.0=bµ ,   (2.17a) 

 88.2
1

=ασ ,       80.11
2

=ασ ,        9144
3

.
α

=σ ,    0323.0=bσ ,  (2.17b)  

 

As the probabability distribution (2.14) cannot be easily factorized in the product of four 

independent probability dsitributions, one will need to use the univariate Nested Sampling 

representation of (2.14), say, 

 

 ( )12321 II, Type,|,,, ADapNS βαα ,      (2.18) 

 

where 2D  is as in Table 2.2 and (2.18) itself is a collection of probability weighted fragility parameter 

vectors, in order to take into account the fragility parameter uncertainty, and 1A  is the action to 

keep the status quo. 

 

Using the Nested Sampling proxies (2.16) and (2.18), we may take into account, by way of the Law of 

Total Probability and the fragility parameter uncertainty in (2.10): 
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and, likewise, 

 

     

( ) ( )
( )

( ) ( )
( )
∑

∑

=

=

βαα

βαα

βααβαααπ

βααππ

,,,

12321321

,,,

1232112

321

321

II, Type,|,,,,,,,|

II, Type,,|,,,,II, Type,,|

a

NS

a

ADapQi

ADQaiADQi

 

           (2.19b) 

 

The fragility parameter weighted damage state probabilities for the type I bridges are given as, 

Figure 2.2 and (2.19a), 

 

( ) [ ]0446.05522.03885.00147.0,I Type,,500| 111 == ADqiπ ,  (2.20a)  

( ) [ ]0322.05056.04410.00212.0,I Type,,450| 112 == ADqiπ ,  (2.20b) 

( ) [ ]1109.06547.02304.00040.0,I Type,,700| 113 == ADqiπ ,  (2.20c) 

 

and the fragility parameter weighted damage state probabilities for the type II bridges are given as, 

Figure 2.2 and (2.19b), 

 

( ) [ ]0840.05966.03106.00089.0,II Type,,300| 124 == ADqiπ , (2.20d) 

( ) [ ]2789.06176.01027.00008.0,II Type,,550| 125 == ADqiπ , (2.20e) 

 

where the damage state probabilities are ordered as 3,2,1,0=i ; that is, for the stress scenario that 

gives us river discharge values as in Figure 2.2, all the bridges have the largest probability to be in 

damage state 2.  The resulting probability map is given in Table 2.3. 

 

 i = 0 i = 1 i = 2 i = 3 

Bridge 1 0.0147 0.3885 0.5522 0.0446 

Bridge 2 0.0212 0.4410 0.5056 0.0322 

Bridge 3 0.0040 0.2304 0.6547 0.1109 

Bridge 4 0.0089 0.3106 0.5966 0.0840 

Bridge 5 0.0008 0.1027 0.6176 0.2789 

Table 2.3: Status Quo Damage State Probability Map of Bridge System under Stress Scenario 

 

 

The repair costs of each of these damage states are assumed to be as in Table 2.4. 
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 i = 0 

Bridge 1 0 

Bridge 2 0 

Bridge 3 0 

Bridge 4 0 

Bridge 5 0 

Table 2.4: Status Quo Damage State 

 

The systems probability and consequence maps in 

Carlo (MC) samples to the conditional outcome frequency distribution in Figure 2.3.

 

  

 

 

The frequency distribution in Figure 

 

 889604=totalX , 

 

So under the hypothetical current status quo

as in Figure 2.3.  

 

2.3.2 Outcome Probability Distribution Under Decision To 

Let us assume that for the bridge of type I 

that is expected to reduce the vulnerability for 

and damage threshold functions of the type I bridge and re

2.1) the limit state function for each dischar

Figure 2.3: Frequency Distribution of Total Repair Costs under the Stress Scenario in Figure 2.2  

 Decision

 

i = 1 i = 2 

10.000 50.000 

10.000 50.000 

10.000 50.000 

6.000 24.000 

6.000 24.000 

Status Quo Damage State Repair Cost Map of Bridge System under Stress Scenario

The systems probability and consequence maps in Tables 2.3 and 2.4 translate for 1.000.000 Monte 

Carlo (MC) samples to the conditional outcome frequency distribution in Figure 2.3.

The frequency distribution in Figure 2.3 has a mean and standard deviation of 

  468900=totalS .  

So under the hypothetical current status quo (i.e. the do-nothing action 1A ) the stress test out

Outcome Probability Distribution Under Decision To Improve Type I Bridges

Let us assume that for the bridge of type I the road manager has some protective measures 

is expected to reduce the vulnerability for scour for bridges of this type. Adjusting the limit state 

and damage threshold functions of the type I bridge and re- sampling (relative to the data in Table 

the limit state function for each discharge value and each damage state, we obtain for each 

Frequency Distribution of Total Repair Costs under the Stress Scenario in Figure 2.2  
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i = 3 

1.000.000 

1.000.000 

1.000.000 

480.000 

480.000 

Map of Bridge System under Stress Scenario 

translate for 1.000.000 Monte 

Carlo (MC) samples to the conditional outcome frequency distribution in Figure 2.3.  

 

 (2.21) 

the stress test output is 

Improve Type I Bridges 

the road manager has some protective measures in mind 

scour for bridges of this type. Adjusting the limit state 

(relative to the data in Table 

ge value and each damage state, we obtain for each 

Frequency Distribution of Total Repair Costs under the Stress Scenario in Figure 2.2   
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discharge value jQ  for each of the actual damage states (i.e., 1=i , 2=i  , and 3=i ) the number 

of realizations ijZ  from a trial of 100=N  replications that are in that damage state, Table 2.5. 

 

 
jQ  jZ1  jZ2  jZ3  

j = 1 10 0 0 0 

j =2 39 0 0 0 

j =3 78 0 0 0 

j =4 156 10 0 0 

j =5 312 30 3 0 

j =6 625 60 10 0 

j =7 1250 100 30 3 

j =8 2500 100 60 10 

j =9 5000 100 100 30 

j =10 10000 100 100 60 

Table 2.5: River Discharge-Damage Realisations Data for Protected Type I Bridge 

 

Note that the difference in the number of ijZ  realizations in Table 3.4 represent a “pushing to the 

right” (with two rows downwards) of the limit state sampled damage state threshold values  relative 

to the damage state realizations in Table 2.1. 

 

By way of the Nested Sampling algorithm (see D6.2, Chapter 6), we may obtain a univariate 

representation for the fragility parameter probability distribution (2.14) which allows us to evaluate 

the mean and standard deviation vectors: 

 

 24.438
1

=αµ ,    19.1801
2

=αµ ,    27.7530
3

=
α
µ ,    8047.0=bµ ,  (2.22a) 

 02.21
1

=ασ ,       08.63
2

=ασ ,        82325
3

.
α

=σ ,    0136.0=bσ .  (2.22b)  

 

As the probabability distribution (2.14) cannot be easily factorized in the product of four 

independent probability dsitributions, one will need to use the univariate Nested Sampling 

representation of (2.14), say, 

 

 ( )21321 I, Type,|,,, ADapNS βαα ,      (2.23) 

 

where 1D  is as in Table 2.5 and (2.23) itself is a collection of probability weighted fragility parameter 

vectors, in order to take into account the fragility parameter uncertainty. Using the Nested Sampling 

proxy (2.23), we may take into account, by way of the Law of Total Probability and the fragility 

parameter uncertainty in (2.10): 
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(2.24) 

 

The fragility parameter weighted damage state probabilities for the type I bridges under the 

protection action 1A  are given as, Figure 2.2 and (2.24), 

 

( ) [ ]0004.00555.05096.04345.0,I Type,,500| 211 == ADqiπ ,  (2.25a)  

( ) [ ]0002.00424.04710.04863.0,I Type,,450| 212 == ADqiπ ,  (2.25b) 

( ) [ ]0016.01188.05994.02810.0,I Type,,700| 213 == ADqiπ ,  (2.25c) 

 

and the fragility parameter weighted damage state probabilities for the type II bridges are as in 

(2.20d) and (2.20e), 

 

( ) ( )124224 II, Type,,300|II, Type,,300| ADqiADqi === ππ ,  (2.25d) 

( ) ( )125225 II, Type,,550|II, Type,,550| ADqiADqi === ππ ,  (2.25e) 

 

where the damage state probabilities are ordered as 3,2,1,0=i .  The resulting probability map is 

given in Table 2.6. 

 

 i = 0 i = 1 i = 2 i = 3 

Bridge 1 0.4345 0.5096 0.0555 0.0004 

Bridge 2 0.4863 0.4710 0.0424 0.0002 

Bridge 3 0.2810 0.5994 0.1188 0.0016 

Bridge 4 0.0089 0.3106 0.5966 0.0840 

Bridge 5 0.0008 0.1027 0.6176 0.2789 

Table 2.6: Damage State Probability Map of Protected Bridge System under Stress Scenario 

 

The repair costs of each of these damage states are assumed to be the same as those in Table 2.4, 

but the certain investment cost to implement the protection measures is  

 

 000.275=I .         (2.26) 

 

For example, the repair cost of the damage state where the bridges 1, 2, and 3 are in damage state 

2=i   and the bridges 4 and 5 are in damage state 3=i , that is, 

 

( ) ( )332221 =x ,  

 

is found by taking the sum of the repair costs in Table 2.4 and the certain investment cost (2.26): 
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( )( )

.000.385.1

50000.50| 2

1

=

+=Ac x

 

Alternatively, the system state where all the bridges are in the undamaged state  

 

( ) ( 000002 =x

 

now has a cost of, Table 2.4 and  (2.26)

 

 

( )( )

.000.275

000| 2

2

=

+++=Ac x

 

The systems probability and consequence maps 

investment cost (2.26) translate for 1.000.000 Monte Carlo (MC) samples to the conditional outcome 

frequency distribution in Figure 2.4

 

 

 

 

The frequency distribution in Figure 2.

 

 509450=totalX , 

 

                                                          
2
 The histogram bars in Figure 2.4 are less wide than in Figure 2.3, as both are histograms with 20 bars, but the 

original x-axis of Figure stopped at 2.5×10

2.3, the widths of histogram bars have changed relative to each other. 

Figure 2.4: Frequency Distribution of Total Repair Costs for Protected System under Stress Scenario

 Decision

 

.

000.275000.480000.480000.50000.50 ++++

Alternatively, the system state where all the bridges are in the undamaged state  

) , 

now has a cost of, Table 2.4 and  (2.26) 

000.27500 +++

    

The systems probability and consequence maps in Tables 2.6 and 2.4 together with the certain 

investment cost (2.26) translate for 1.000.000 Monte Carlo (MC) samples to the conditional outcome 

frequency distribution in Figure 2.4
2
. 

The frequency distribution in Figure 2.4 has a mean and standard deviation of 

  247880=totalS .  

                   

The histogram bars in Figure 2.4 are less wide than in Figure 2.3, as both are histograms with 20 bars, but the 

Figure stopped at 2.5×10
6
, by forcing this axis to be of the same length as the 

2.3, the widths of histogram bars have changed relative to each other.  

Frequency Distribution of Total Repair Costs for Protected System under Stress Scenario
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000

 (2.27a) 

Alternatively, the system state where all the bridges are in the undamaged state  0=i , 

 (2.27b) 

in Tables 2.6 and 2.4 together with the certain 

investment cost (2.26) translate for 1.000.000 Monte Carlo (MC) samples to the conditional outcome 

 

 (2.28) 

The histogram bars in Figure 2.4 are less wide than in Figure 2.3, as both are histograms with 20 bars, but the 

, by forcing this axis to be of the same length as the x-axis in Figure 

Frequency Distribution of Total Repair Costs for Protected System under Stress Scenario 
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So under the protection action in which type I bridges are strengthened, the stress test output is as 

in Figure 2.4.  

 

2.3.3 Choosing Between Outcome Probability Distributions 

A quick inspection of the means and standard deviations in (2.21) and (2.28) shows that the under 

the stauts quo the projected costs will be slightly lower than under the investment in the 

strengthening of the type I bridges: 

 

 889604=totalX   vs.  509450=totalX .  (2.29) 

 

 However, the investment in protection measures does reduce the spread (i.e. volatility) in risk: 

 

 468900=totalS   vs.  247880=totalS .  (2.30)  

 

Under the expected outcome/utility theories (2.3), we will neglect (2.30) as we choose for the action 

1A  (i.e. do-nothing) , based on (2.29): 

 

 ( ) ( )21 |509450889604| AXEAXE =<= .     (2.31) 

 

In contrast, under the design return period approach (2.4), we will take (2.30) into account as we 

choose for the action 2A  (i.e. invest in protection measures) , based on the worst-case assessment 

(2.29) and (2.30): 

 

 

( ) ( ) ( )

( )

( ) ( )22

11

|std|

247880509450

468900889604|std|

AXkAXE

k

kAXkAXE

+=

+>

+=+

   (2.32) 

 

for 1≥k . Alternatively, using the risk-index (2.6) 

 

 ( ) ( ) ( ) ( )
3

,
XUBXEXLB

f
++

=px ,   

    

we may compute the k-sigma risk indices for both the actions 1A  and 2A , as explained in both the 

next section and (more elaborately) in Chapter 3, and proceed to make a ‘balanced’ assessment, 

Table 2.7 (recommended action in boldface). 
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1A  2A  

0-sigma risk 488960 509450 

1-sigma risk 488960 513927 

2-sigma risk 638573 596553 

3-sigma risk 794873 679180 

Table 2.7: Balanced Risk Indices 

(recommended action bold-faced) 

                        

So, if we operationalize risk as probability times consequence [i.e. (2.3)] , we will choose not to 

invest in protection measures for the type I bridges, that is, we will choose 1A . If we operationalize 

risk as some worst-case scenario [i.e. the design return period approach (2.4)], we will choose to 

invest in protection measures for the type I bridges, that is, we will choose 2A . If operationalize risk 

as a a balanced trade-off between worst-, most likely-, and best-case scenarios [i.e. (2.6)], then the 

choice of our action will be guided by what we consider to constitute worst- and best-case scenarios. 

For 1-sigma worst- and best-case scenarios we will have a (slight) preference for   action 1A . But as 

we consider higher order sigma worst- and best-case scenarios, then our preference will shift ever 

more strongly towards 2A , Table 2.7. 

 

Note that for this particular probabilistic cost-benefit analysis, as we have weighted costs and 

benefits by way of their plausibility of occurring, the decision theoretical resolution is somewhat 

low. Stated differently, our decisions are not clear and crisp, as the infrastructural risk-manager is 

likely to agonize whether or not to invest in additional protection measures for bridges of type I, as 

the row values in Table 2.7 are relatively close to each other. In Chapter 4 we give another decision 

theoretical toy-problem, which has a more clear decision theoretical resolution. 

In closing, if we only consider the means (2.29), then we are effectively assessing the worst and best 

case scenarios to be equal to those means (2.6): 

 

  
( ) ( ) ( ) ( ) ( ) ( ) ( )XE

XEXEXEXUBXEXLB
=

++
=

++

33
,   (2.33) 

 

which is why the 0-sigma row in Table 2.7 gives the mean for both 1A  and 2A , (2.29).  

 

If we consider the plausible best and worst case scenarios to be, respectively, the 1-sigma lower and 

upper bounds, then for the 1A  column we may compute the best case scenario to be (in terms of 

total repair costs) to be 

 

 ( ) ( ) ( ) 20060468900488960std =−=−= XXEXLB ,   (2.34) 

 

and the worst case scenario 

 

 ( ) ( ) ( ) 957860468900488960std =+=+= XXEXUB .   (2.35) 
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Subsitting (2.34) and (2.35) into (2.6), we have that the standard deviation ( )Xstd  in both (2.34) 

and (2.35) will cancel out: 

 

 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

( )XE

XstdXEXEXstdXEXUBXEXLB

=

+++−
=

++

33

 (2.36) 

 

which is why the 1-sigma row in Table 2.7 gives again the mean of  1A .  

 

However, if we consider the still plausible best and worst case scenarios to be, respectively, the 2-

sigma lower and upper bounds, then for the 1A column we may compute the best case scenario to 

be (in terms of total repair costs) to be 

 

 ( ) ( ) ( ) 448840937800488960std2 −=−=−= XXEXLB ,   (2.37) 

 

which has to be corrected for lower bound undershoot [as negative repair costs equate (unrealistic) 

profits resulting from having to repair damaged infrastructure]: 

 

 ( ) 0=XLB ,         (2.38) 

 

and the worst case scenario as 

 

 ( ) ( ) ( ) 1426760937800488960std2 =+=+= XXEXUB .   (2.39) 

 

Subsitting (2.38) and (2.39) into (2.6), we no longer have that the standard deviation ( )Xstd   

cancels out: 

 

 

( ) ( ) ( ) ( ) ( ) ( )[ ]

( ) ( )
3

std22

3

std20

3

XXE

XXEXEXUBXEXLB

+
=

+++
=

++

   (2.40) 

 

which is why the 2-sigma row in Table 2.7 gives a value other than the mean of  1A . 
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3.0 A DECISION THEORETICAL OVERVIEW 

In this chapter a theoretical discussion of the Bayesian decision theory is given (van Erp et al., 

2016a). This is done by relating the Bayesian decision theory to the expected outcome and expected 

utility theories that came before it.  The goal is to develop methods and techniques how to proceed 

after a stress test would result in a positive or negative result. Questions such as whether safety 

measures need to be taken to improve the situation (and to which extent) or if actions can be 

delayed, can be answered by adopting a cost-benefit framework within the Bayesian paradigm.  

3.1 Expected Outcome Theory 

Expected outcome theory has been around since the 17th century, when the rich merchants of 

Amsterdam sold and bought expectations as if they were tangible goods. The algorithmic steps of 

expected outcome theory are very simple: 

(1) For each possible decision construct an outcome probability distributions; i.e. for each 

possible decision, assign to every conceivable contingency both an estimated net-monetary-

consequence and a probability. 

(2) Choose that decision which maximizes the expectation values (i.e. means) of the outcome 

probability distributions. 

3.2 Bernoulli’s Expected Utility Theory 

In the 18th century Bernoulli provided a fundamental contribution to expected outcome theory in 

that he proposed that it were not the actual gains and losses that move us, but rather that it is the 

utility of these gains and losses that move us. Moreover, Bernoulli offered up a specific function by 

which to translate these gains and losses to their corresponding utilities: 

 

 
m

xm
qu

+
= log ,    0>q ,    (3.1) 

 

where q  is some scaling constant that falls away in the decision theoretical (in)equalities, m  is the 

initial wealth of the decision maker, and x  is either a gain or a loss.   

 

In the utility function (3.1) the initial wealth functions as a reference point in the following sense. For 

increments x  which are small relative to the initial wealth m  the utility function (3.1) becomes 

linear, as losses are weighted the same as corresponding gains. Whereas for increments x  which are 

large relative to the initial wealth m  the utility function (3.1) becomes non-linear, as losses are 

weighted heavier than corresponding gains. So, Bernoulli’s utility function predicts that the 

psychological phenomenon of loss aversion will hold for large consequences like, say, the burning 

down of a house, but not for small consequences like, say, the breaking of an egg. This is 

commensurate with our intuition.  

 

Bernoulli, having provided both the concept and the quantification of utilities, proposed his 

expected utility theory as a straightforward generalization of the expected outcome theory. The 

algorithmic steps of expected utility theory are as follows (Bernoulli, 1738): 
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(1) For each possible decision construct an outcome probability distributions; i.e. for each 

possible decision, assign to every conceivable contingency both an estimated net-monetary-

consequence and a probability. 

(2) Transform outcome probability distributions to their corresponding utility probability 

distributions; i.e. convert the outcomes of the outcome probability distributions to their 

corresponding utilities, using Bernoulli’s utility function. 

(3) Choose that decision which maximizes the expectation values (i.e. means) of the utility 

probability distributions. 

Bernoulli’s utility concept remained uncontested in the centuries that followed his 1738 paper, but 

the same cannot be said for his utility function (3.1). Even though Bernoulli’s utility function has 

been demonstrated to also hold for sensory stimuli perception (Fancher, 1991), and not only for 

monetary stimulus perception. Moreover, Bernoulli’s utility function may be derived from sound 

first principles (see Appendix A). 

 

In von Neumann and Morgenstern’s reintroduction of Bernoulli’s expected utility theory the specific 

form of the utility function was left unspecified (von Neumann and Morgenstern, 1946). This added 

degree of freedom in the expected utility theory opened the way for alternative utility functions, 

like, say, the function (Tversky & Kahneman, 1992):  

 

 ( )a
xu −= ,    for 0>a  and 0≤x .   (3.2) 

 

This alternative power function (6.2), however, does not, like Bernoulli’s utility function (3.1), have 

an explicit reference point by which to modulate the strength of the loss aversion effect as a 

function of both the current asset position and the increment in that asset position. Moreover, (3.2) 

lacks the general validity that (3.1) enjoys as the psycho-physical Fechner-Weber law that guides our 

human sense perception (Fancher, 1991). Finally, Bernoulli’s utility function admits a consistency 

derivation which shows that the only consistent utility function is either the utility function (3.1) or 

some transformation thereof (van Erp et al., 2015), and it may be shown that (3.2) does not belong 

to this class of consistent utility functions.       

3.3 Bayesian Decision Theory 

The Bayesian decision theory is neo-Bernoullian in that it proposes that the utility function (3.1) is 

the most appropriate function by which to translate, for a given initial wealth, gains and losses to 

their corresponding utilities. But it deviates from both the expected outcome and the expected 

utility theories in that it questions the appropriateness of the criterion of choice where one has to 

choose that decision that maximizes the expectation values, or, equivalently, the means, of the 

outcome probability distributions under the different decisions. 

3.3.1 The Criterion of Choice as a Degree of Freedom 

Let 
1

D  and 
2

D  be two actions we have to choose from. Let 
i

x , for ni ,,1K= , and 
j

x , for mi ,,1 K= , 

be the monetary outcomes associated with, respectively, actions 
1

D  and 
2

D . Then in the Bayesian 

decision theory – as in expected outcome and utility theories – one constructs the two outcome 

distributions that correspond with these decisions: 
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 ( )
1

| Dxp
i

,  and  ( )
2

| Dxp
j

.    (3.3) 

 

One then proceeds – as in expected utility theory – to map utilities to the monetary outcomes in 

(3.3), by way of the Bernoulli utility function (3.1). This leaves us with the utility probability 

distributions: 

 

 ( )
1

| Aup
i

,  and  ( )
2

| Aup
j

.    (3.4) 

 

Now, our most primitive intuition regarding the utility probability distributions (3.4) is that the action 

which corresponds with the utility probability distribution which lies more to the right will also be 

the action that promises to be the most advantageous. So, when making a decision we ought to 

compare the positions of the utility probability distributions on the utility axis and then choose that 

action which maximizes the position of these utility probability distributions.  

 

This all sounds intuitive enough. But how do we define the position of a probability distribution? 

Ideally we would have some formal (consistency) derivation of what constitutes a position measure 

of a probability distribution. But in the absence of such a derivation we have to take our recourse to 

ad hoc common sense considerations. Stated differently, the criterion of choice in our decision 

theory constitutes a degree of freedom.  

3.3.2 The Probabilistic Worst, Most Lkely, and Best Case Scenarios 

From the introduction of expected outcome theory in the 17th century and expected utility theory in 

the 18th century the implicit assumption has been that the expectation value of a given probability 

distribution is a position of its measure (Jaynes, 2003; Bernoulli, 1738). The expectation value is a 

measure for the location of the centre of mass of a given probability distribution; as such it may give 

one a probabilistic indication of the most likely scenario: 

 

 ( ) ∑
=

=
n

i

ii xpXE
1

.         (3.5) 

 

The qualifier ‘probabilistic indication’ is used here in order to point to the fact that the expectation 

value, or, equivalently, the mean, need not give a value that one would necessarily expect.  

In the Value at Risk (VaR) methodology – used in the financial industry (Davies, 2010) – the 

probabilistic worst case scenarios are taken as a criterion of choice, rather than the most likely 

scenarios (in the probabilistic sense). In the VaR methodology the probabilistic worst case scenario is 

operationalized  as the 1% percentile. But instead of percentiles one may also use the confidence 

lower bound to operationalize a probabilistic worst case scenario.  

 

The absolute worst case scenario is: 

 

 ( )
n

xxa ,,min
1
K=         (3.6) 
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The criterion of choice (3.6) is also known as the minimax criterion of choice (Lindgren, 1993). The k-

sigma lower bound of a given probability distribution is a given as 

 

 ( ) ( ) ( )XkXEklb std−=         (3.7) 

 

where k  is the sigma level of the lower bound and where, (3.3), 

 

 ( ) ( )[ ]2

1

2std XExpX
n

i

ii
−= ∑

=

       (3.8) 

 

is the standard deviation. The probabilistic worst case scenario then may be quantified as an 

undershoot corrected lower bound, (3.6) and (3.7): 

 

 ( )
( ) ( )

( )



<

≥
=

.,

,,

aklba

aklbklb
kLB      (3.9) 

 

Note that the probabilistic worst case scenario (3.9) holds the minimax criterion of choice (3.6) as a 

special case for large k  in (3.7). For 1=k , the criterion of choice (3.9) constitutes a still likely worst 

case scenario (in the probabilistic sense).  

 

One may also imagine – in principle – a decision problem in which one is only interested in the 

probabilistic best case scenarios. The absolute best case scenario is: 

 

 ( )
n

xxb ,,max
1
K=         (3.10) 

 

The criterion of choice (3.10) is also known as the maximax criterion of choice.  The k-sigma upper 

bound of a given probability distribution is a given as: 

 

( ) ( ) ( )XstdkXEkub +=        (3.11) 

 

where k  is the sigma level of the upper bound. The probabilistic best case scenario then may be 

quantified as an overshoot corrected upper bound, (3.10) and (3.11): 

 

 ( )
( )

( ) ( )



≤

>
=

.,k

,,

bkubub

bkubb
kUB      (3.12) 

 

Note that the probabilistic best case scenario (3.12) holds the maximax criterion of choice (3.10) as a 

special case for large k  in (6.11). For 1=k , the criterion of choice (3.12) constitutes a still likely best 

case scenario (in the probabilistic sense).  

 

If one takes as a criterion of choice (3.5), then one neglects what may happen in the worst and the 

best of worlds. If one takes as a criterion of choice (3.9), then one neglects what may happen in the 

most likely and the best of worlds. If one takes as a criterion of choice (3.12), then one neglects what 
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may happen in the worst and the most likely of worlds. An exclusive commitment to any of the 

criteria of choice (3.5), (3.9), (3.12), will necessarily leave out some pertinent information in one’s 

decision theoretical considerations. So, how to untie this Gordian knot?      

3.3.2 A Probabilistic Hurwitz Criterion of Choice  

In Hurwitz’s criterion of choice the absolute worst and best case scenarios are both taken into 

account; for a balanced pessimism coefficient of 21=α  we have that, (3.6) and (3.10): 

 

 Hurwitz’s criterion of choice 
2

ba +
= .      (3.13) 

 

Now, we may replace the absolute worst and case scenarios in (3.13) with their corresponding 

probabilistic undershoot and overshoot corrected counterparts, (3.9) and (3.12): 

 

 probabilistic Hurwitz’s criterion of choice 
( ) ( )

2

kUBkLB +
=    (3.14) 

 

Under the criterion of choice (3.14) undecidedness between 
1

D  and 
2

D  translates to the decision 

theoretical equality: 

 

     
( ) ( ) ( ) ( )

2

||

2

||
2211

DkUBDkLBDkUBDkLB +
=

+
,    (3.15) 

 

or, equivalently, 

 

       ( ) ( ) ( ) ( )
1221

|||| DkUBDkUBDkLBDkLB −=− ,    (3.16) 

 

a trade-off between the losses/gains in the probabilistic worst case scenarios (3.9) and the 

corresponding gains/losses in the probabilistic best case scenarios (3.10). It follows, seeing that 

(3.13) is a limit case of (3.14), that for a balanced pessimism coefficient of 21=α  Hurwitz’s 

criterion of choice gives us a balanced trade-off between the differences in the absolute worst case 

scenarios and the differences in the absolute best case scenarios.  

 

The probabilistic Hurwitz criterion of choice (3.14) translates to, (3.9) and (3.12): 
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It follows that the alternative criterion of choice (3.14), which takes into account what may happen 

in the worst and the best of worlds, both holds the traditional expected value criterion of choice 

(3.5) as a special case as well as Hurwitz's criterion of choice with a balanced pessimism factor (3.13). 

However, it may be found that the criterion of choice (3.14) – and by implication also the Hurwitz 

criterion of choice (3.13) – is  vulnerable to a simple counter-example. 

 

Imagine we have two utility probability distributions having equal lower and upper bounds ( )kLB  

and ( )kUB , but one distribution being right-skewed and the other being left-skewed. Then the 

criterion of choice (3.14) will leave one undecided between the two decisions, whereas our intuition 

would give preference to the decision corresponding with the left-skewed distribution, as the bulk of 

the probability distribution of the left-skewed distribution will be more to the right than that of the 

right-skewed distribution.  

3.3.3 The Proposed Criterion of Choice 

The probabilistic Hurwitz criterion of choice (3.17) is an alternative to the expectation criterion of 

choice (3.5) which also takes into account the standard deviation of a given probability distributions, 

by way of the positions of the under and overshoot corrected lower and upper bounds. But the 

universality of this proposal is compromised by way of the simple counter example of a right-skewed 

and a left-skewed distribution which have the same lower and upper bounds, (3.9) and (3.12). It 

follows that a criterion of choice, in order to be universal, should not only take into account the 

trade-off between the probabilistic worst and best case scenarios, as is done in (3.17), but also the 

location of the probabilistic bulk of the probability distribution.  

The following position measure for a probability distribution accommodates the intuitive preference 

for the left-skewed distribution of the counter example, while taking into account the probabilistic 

worst and best cases: 
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 (3.18) 

 

Note that the alternative criterion of choice (3.18), which takes into account what may happen in the 

worst, the most likely, and the best of worlds, both holds the traditional expected value criterion of 

choice (3.5) as a special case. 

 

In any problem of choice one will endeavour to choose that action which has a corresponding utility 

probability distribution that is lying most the right on the utility axis; that is, one will choose to 

maximize their utility probability distributions. In this there is little freedom. But one is free, in 

principle, to choose the measures of the positions of one’s utility probability distributions any way 

one see fit. Nonetheless, it is held to be self-evident that it is always a good policy to take into 

account all the pertinent information at hand.  
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Firstly, if one only maximizes the expectation values of the utility probability distributions, then one 

will, by definition, neglect the information that the standard deviations of the utility probability 

distributions have to bear on one’s problem of choice.  

 

Secondly, if one only maximizes one of the confidence bounds of the utility probability distributions, 

while neglecting the other, then one will be performing a probabilistic minimax or maximax analysis, 

and, consequently, neglect the possibility of either the (perhaps catastrophic) losses in the lower 

bound or the (pperhaps astronomical) gains in the upper bound.  

 

Thirdly, if one only maximizes the sum of the lower and upper bounds, or a scalar multiple thereof, 

then one will make a trade-off between the probabilistic worst and best case scenarios. But in the 

process, one will, for unimodal distributions, be neglecting the location of the bulk of the probability 

distributions.  

 

In light of the above three considerations the scalar multiple the sum of the undershoot corrected 

lower bound, expectation value, and overshoot corrected upper bound, that is, (3.18), is currently 

believed to be the most all-round position measure for a given probability distribution, as it takes 

into account the position of the probabilistic worst and best case scenarios, (3.9) and (3.12), as well 

as the position of the probabilistic most likely scenario, (3.5).       

3.3.4 The Algorithmic Steps of the Bayesian Decision Theory 

The algorithmic steps of the Bayesian decision theory are as follows (van Erp et al., 2015): 

(1) For each possible decision construct an outcome probability distribution; i.e. for each 

possible decision, assign to every conceivable contingency both an estimated net-monetary-

consequence and a probability. 

(2) Transform outcome probability distributions to their corresponding utility probability 

distributions; i.e. convert the outcomes of the outcome probability distributions to their 

corresponding utilities, using Bernoulli’s utility function. 

(3) Maximize a scalar multiple of the sum of the lower bound, the expectation value, and the 

upper bound of the utility probability distributions; that is, the criterion of choice (3.18).  

Note that the Bayesian decision theory is just Bernoulli’s expected utility theory, except for the 

alternative criterion of choice (3.18) which is to be maximized. But in the case that the k-sigma 

confidence lower bound (3.7) does not undershoot the absolute minimum (3.6) and the confidence 

upper bound (3.11) does not overshoot the absolute maximum (3.10), then the criterion of choice 

(3.18) collapses to the expectation value (3.5) and, as a consequence, the Bayesian decision theory 

becomes equivalent to Bernoulli’s expected utility theory.  

 

The Bayesian decision theory is a neo-Bernoullian utility theory which also aims to improve on 

expected utility theory, as did game theory and prospect theory before it. But in its approach it takes 

the middle road, just as Daniel Bernoulli himself did when he wrote his St. Petersburg paper, in that 

it recognizes both the desirability of mathematical first principles as well as the necessity for any 

mathematical theory of human rationality to be able to stand to the benchmark of our common 

sense.  



INFRARISK 

Deliverable D6.3   Decision-Making Protocol 

 

30 
© The INFRARISK Consortium   

3.4 Why the Best-Case Scenario Does Matter 

Now, both the risk indices (3.5) and (3.12) may appeal to our intuition. The expectation value (3.5) is 

a traditional definition of risk, whereas the upper k-sigma bound (3.12) – i.e. the ‘worst-case 

scenario’ if the ix  pertain to some hazard intensity measure – is a traditional engineering design 

criterion, as structures are built to withstand return periods of hazard intensity measures and as 

those return periods typically correspond to some upper k-sigma bound, or, equivalently, upper 

percentile. The expectation value relates to that which is most likely to happen, whereas the upper 

k-sigma bound /percentile informs us about the possible severity of a still plausible worst-case 

scenario.  

 

However, behavioral economists have shown, by way of hypothetical betting experiments, that 

expected utility theory, which takes as its implied position measure the expectation value (3.5), may 

suggest to us decisions which are forcefully rejected by our common sense (Tversky and Kahneman, 

1992). The resulting discrepancy between, on the one hand, the predictions made by expected utility 

theory and, on the other hand, the observed betting preferences in psychological laboratory 

experiments is the very bedrock upon which the behavioral economy paradigm of the non-rational 

chooser is founded (Kahneman, 2011).  

 

But one may also interpret this observed discrepancy to be an indication that the expectation value 

is a suboptimal position measure for at least some probability distributions. This is why we ourselves 

in the first two years of our decision theoretical research only considered the criterion of choice (3.7) 

– i.e. the uncorrected ‘worst-case scenario’ if the ix  pertain to monetary net gains – as we were 

trying to accommodate these discrepancies between model predictions and empirical data.  

 

After having presented our findings for the first time, however, we came to realize that the 

probabilistic best-case scenario is also important. If the probabilistic worst-case scenario will compel 

us to invest in risk mitigation measures, then the probabilistic best-case scenario will caution us to 

be frugal. If we make a trade-off between this desire to invest in risk mitigation, on the one hand, 

and  frugality, on the other hand, then this trade-off will result in an optimal – because balanced – 

decision.  

 

For example, say we have decisions 1D  and 2D . Decision 1D  is the decision to keep the status quo; 

that is, to do nothing. Decision  2D  is the decision to invest an amount of  I  euros in order to bring 

down the current probability of some adverse event that will lead to extra repair costs, relative to a 

base-line repair cost of 0 euros, in (the likely) case this adverse event does not materialize.  

Under the criterion of choice (3.12), we will have that we are undecided between 1D  and 2D  if  

 

 

( ) ( ) ( ) ( )

( ) ( ),||

||||

22

2211

DXstdkDXEI

DXIstdkDXIEDXstdkDXE

++=

+++=+

   (3.19) 

 

(we can go from the first right-hand to second right-hand because I  is a constant), or, equivalently, 
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 ( ) ( )21 || DXUBIDXUB += .       (3.20) 

 

In words, under the criterion of choice (3.12), we will be inclined to choose 2D  over 1D  if the 

consequent reduction in risk, that is, the upper bound/upper percentile of the repair cost probability 

distribution, is smaller than the investment cost I : 

 

 ( ) ( )21 || DXUBDXUBI −< .       (3.21) 

 

Now, the repair cost probability distributions under 1D  and 2D  will also admit a lower bound, 

which because of the right-skewness of the probability distributions under High-Impact Low- 

Probability (HILP) events will for  1D  undershoot the base-line 0 euro repair costs for 1≥k  sigma 

bounds 

 

 ( ) ( ) ( ) 0||| 111 <−= DXstdkDXEDXLB      (3.22) 

 

and, likewise, for  2D  undershoot the base-line 0 euro repair costs plus I  euro investment 

 

( ) ( ) ( ) ( ) IDXstdkDXEIDXLBIDXILB <−+=+=+ 2222 |||| ,  (3.23) 

 

which is why we have to correct for this undershoot and set 

 

 ( ) 0| 1 =DXLB .        (3.24) 

 

and, likewise, for  2D  undershoot the base-line 0 euro repair costs plus I  euro investment 

 

( ) ( ) IDXLBIDXILB =+=+ 22 || .      (3.25) 

 

The undershoot corrected lower bounds (10.17) and (10.18) calls to attention the loss of I  euros 

that the risk reduction investment will incur in the best-case scenario where no adverse event 

materializes. 

 

This is what we mean if we say that the probabilistic worst-case scenario will compel us to invest in 

risk mitigation measures, whereas the probabilistic best-case scenario will caution us to be frugal. 

For as long as inequality (3.21) holds, or, equivalently, 

 

 ( ) ( ) 0|| 21 >+−=∆ DXIUBDXUBUB ,     (3.26) 

 

we will be willing to increase our investments I , but the more we invest, the greater will be the 

investment ‘loss’, (3.24) and (3.25), 
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 ( ) ( ) IDXILBDXLBLB −=+−=∆ 21 || .     (3.27) 

 

So if we also take into account the best case scenarios, then the investment attractor (3.26), which 

follows from the repair cost upper bounds, is counter balanced by the investment loss (3.27), which 

follows from the repair cost lower bounds.  

 

It may be shown that the trade-off between the investment attractor (3.26) and the investment loss 

(3.27) may be enforced by maximizing the respective probabilistic Hurwicz criteria: 

 

 ( ) ( ) ( )
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DXUBDXLB
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= ,      (3.28) 

 

and   

( ) ( ) ( )
2

|| 11
2

DXIUBDXILB
DR

+++
= .      (3.29) 

 

which give us an investment willingness which is half the investment willingness under (3.21) 

 

 
( ) ( )

2

|| 21 DXUBDXUB
I

−
< .       (3.30) 

 

However, it may be shown, as discussed in Chapter 6, that the probabilistic Hurwicz criterion is 

vulnerable to a simple counter example, which is why we recommend the alternative risk index 

(3.18): 

 

 ( ) ( ) ( ) ( )
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||| iii
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DXUBDXEDXLB
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++
= .    (3.31) 

 

This risk index not only makes the trade-off between the investment attractor (3.26) and the 

investment loss (3.27), but also takes into account that which is most likely to happen, by way of the 

additional inclusion of the expectation value (3.5).  

3.5 Discussion 

Although it seems hardly conceivable today, nonetheless, the historical record shows clearly and 

repeatedly that the notion of ‘expectation of profit’ to these first workers in probability theory was 

maybe even more intuitive than the notion of probability itself (Jaynes, 2003). Moreover, it was so 

obvious to many that a person acting in pure self-interest should always behave in such a way as to 

maximize the expected profit that the prosperous merchants in 17th century Amsterdam bought 

and sold mathematical expectations as if they were tangible goods.  

 

A new insight into risk science came in 1738 with the St Petersburg paper (Bernoulli, 1738). This 

paper is truly important on the subject of risk as well as on human behavior, since it introduces the 

pivotal idea that the true value to a person, of receiving a certain amount of money, is not measured 

simply by the amount received; it also depends upon how much he already has: “Utility resulting 
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from any small increase in wealth will be inversely proportionate to the quantity of goods previously 

possessed.”  

 

This idea is as simple as it is intuitive, for it stands to reason that a poor person will assign a much 

higher utility to the monetary gain of a thousand euros than a billionaire will. A modern economist is 

expressing the same idea when he speaks of the ‘diminishing marginal utility of wealth’. So where 

decision theory, by way of the maximization of the expectation of profit, hitherto only had taken 

profits and the probabilities of these profits materializing into account, there Daniel Bernoulli 

identified the initial wealth of the decision maker as a third decision theoretical factor of 

consequence.  

 

Bernoulli’s expected utility theory laid the intellectual groundwork for many aspects of micro-

economic theory and decision-theory. Furthermore, it also, by way of its utility function – that 

function which measures that which cannot be counted – also managed to elevate psychology in 

1860 from a mere metaphysical pastime to an exact science (Fancher, 1990), as it was found by 

Fechner that Bernoulli’s utility function may model our perception of sensory stimuli for a given 

background stimulus intensity (Masin et al., 2009); e.g. the decibel scale is an instance where 

Bernoulli’s utility function converts objective loudness stimuli to a corresponding subjective scale.  

Moreover, with the introduction of operational risk management in the mid-20th century, in the 

aftermath of the second world war and the beginning of the atomic era, Bernoulli’s expected utility 

theory has remained as relevant as it ever was. For many improvements by many authors have been 

proposed to Bernoulli’s initial 1738 proposal; the most notable of these proposed improvements 

being game theory and their off-shoots (von Neumann & Morgenstern, 1946; Savage, 1954)  and 

prospect theory (Tversky and Kahneman, 1992).  

 

Von Neumann and Morgenstern formulated a lofty predictive mathematical theory on their 

axiomatic scaffolding and proclaimed that their theory had superseded Bernoulli’s expected utility 

theory, as a more general theory (von Neumann & Morgenstern, 1946). But Kahneman and Tversky 

then were quick to point out that both Von Neumann and Morgenstern’s game theory and 

Bernoulli’s expected utility theory could be demonstrated to violate common sense rationality in 

certain instances and, as a reaction, counter postulated that human rationality can never be 

captured by simple mathematical maximization principles (Bernstein, 1998).  

 

Kahneman and Tversky then proceeded to propose a mathematical descriptive decision theory that 

was rooted in empirical observation of psychological betting experiments, rather than abstract 

mathematical first principles (Tversky and Kahneman, 1992). So persuasive was the case made by 

Kahneman and Tversky that the descriptive paradigm of behavioral economics came to dominate 

the decision theoretical field.  

 

But it has been found that cumulative prospect theory, which is not build from first principles, but, 

rather, is built from the outset to accommodate the Ellsberg and Allais paradox, as well as the 

specific convex-down and concave-up shape of the fair probability curves in certainty bets, may be 
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replaced by Bernoulli’s original proposal
3
 (Bernoulli, 1738), with the adjusted criterion of choice that 

the confidence bound overshoot corrected position measure of the utility probability distribution 

(3.18), should be maximized; rather than the expected utility value (3.5). This, mathematically trivial 

adjustment of Bernoulli’s expected utility theory
4
 – that is, the Bayesian decision theory – 

accommodates the experimental results which were in contradiction with von Neumann and 

Morgenstern’s expected utility proposal and, moreover, is built from first principles (van Erp et al., 

2014).  

 

So just as prospect theory, in its initial inception, was mainly a reaction to von Morgenstern and 

Neumann’s game theory, which put too high a premium on mathematics, while failing to appeal to 

our common sense. So the Bayesian decision theory (van Erp et al., 2015) is a reaction to Kahneman 

and Tversky’s prospect theory, which puts too high a premium on bare bone empiricism of 

hypothetical betting experiments, while failing to appeal to our mathematical need for compelling 

first principles. 

 

  

                                                           
3
 Bernoulli’s original 1738 article was translated, from its original Latin in English, only as late as 1954.    

4
 Note that the Ellsberg and some of the Allais paradoxes were already accommodated by Bernoulli’s original 

proposal, whereas it is the adjusted criterion of choice, where (3.18) is maximized rather than (3.5), which 

allows us to reproduce, from first principles, the specific convex-down and concave-up shape of the fair 

probability curves, as found in the experimental certainty bets, as well as the remaining Allais paradoxes not 

accounted for by Bernoulli’s expected utility theory.  
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4.0 MODELLING INVESTMENT WILLINGNESS 

In this chapter a simple toy problem is discussed by way of the three decision theories: expected 

outcome theory, expected utility theory, and Bayesian decision theory (van Erp et al., 2016b). In the 

first part of this chapter the analytical solution of the investment willingness, or, equivalently, 

hypothetical benefits, is given. In the second part of this chapter some numerical values will be 

inserted into these analytical expressions and the resulting numerical solutions will then be 

discussed.  

4.1 The Problem of Choice 

The Bayesian framework is now applied to a problem of choice in which a decision maker must 

decide on how much he is willing to invest in order to reduce the probability of a type II risk event 

(High Impact Low Probability HILP event) occurring. The two decisions under consideration in this 

simple scenario are: 

 

 =
1

D  keep the status quo, 

 =
2

D improve barrier for type II event. 

 

The possible outcomes in the risk scenario remain the same under either decision, and therefore are 

not dependent upon the particular decision taken. These outcomes are 

 

 =
1

O  catastrophic type II event occurs, 

 =
2

O  no type II event. 

 

The hypothetical damages associated with these outcomes are,  

 

xO −=
1

 euros, 

 0
2

=O  euros,         (4.1) 

 

respectively, and the investment costs associated with the additional improvement of the type II 

event barriers are expressed by the parameter 

 

 =I  investment costs.        (4.2) 

 

The decision whether to improve the type II event barriers or not is of influence on the probabilities 

of the respective outcomes. Under the decision to make no additional investments in the type II 

event barriers and keep the status quo, 
1

D , the probabilities of the outcomes will be, say, 

 

 ( ) θ=
11

| DOP , 

 ( ) θ−= 1|
12

DOP .        (4.3) 

 

Under the decision to improve the type II event barriers, 2D , the probability of the catastrophic  

type II event will be decreased, say, 
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 ( ) φ=
21

| DOP , 

 ( ) φ−= 1|
22

DOP .        (4.4) 

 

where θφ < . Stated differently, the proposed barrier improvements will decrease the chances of 

the catastrophic type II event by a factor of φθ=c . 

 

In what follows, the solution of this problem of choice will be  given for expected outcome theory, 

expected utility theory, and Bayesian decision theory. These solutions will be given in terms of 

variable x , θ , and φ , respectively, (4.1), (4.3), and (4.4).  

4.2 The Expected Outcome Theory solution 

The prosperous merchants in the 17th century Amsterdam bought and sold expectations as if they 

were tangible goods. It seemed obvious to many that a person acting in pure self-interest should 

always behave so as to maximize his expected profit (Jaynes, 2003). 

Combining (4.1) through (4.4), one may construct the outcome probability distributions under the 

decisions 
1

D  and 
2

D : 
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and 
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     (4.6) 

 

where in (4.6) one may explicitly conditionalize on the investment parameter I , which is to be to 

estimated. The expected outcomes of these probability distributions are, respectively (Lindgren, 

1993): 

 

 ( ) xDOE θ−=
1

| ,        (4.7) 

 

And 

 

 ( ) IxDIOE −−= φ
2

,| .        (4.8) 

 

The decision theoretical equality 

 

 ( ) ( )
21

,|| DIOEDOE =         (4.9) 

 

represents the equilibrium situation, where it will be undecided to choose between the decision to 

keep the status quo 
1

D  and the decision to invest in additional barrier improvements 
2

D . Now, if 

one solves for I  in (4.9), by way of (4.7) and (4.8): 
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 ( )xI φθ −= ,         (4.10) 

 

then we find that investment where one will be undecided between either decision.  

 

Stated differently, any investment cost smaller than (4.10) will turn (4.9) into an inequality, where 

2
D becomes more attractive than 

1
D . It follows that the equilibrium investment  (4.10) is also the 

maximal investment one will be willing to make in order to improve the type II event barriers, or, 

equivalently, (4.10) is the hypothetical benefit of the type II event barrier improvement. 

4.3 The Expected Utility Theory Solution 

For a rich man hundred euros is an insignificant amount of money. So, the prospect of gaining or 

losing a hundred euros will fail to move the rich man, that is, an increment of hundred euros for him 

has a utility which tends to zero. For the poor man a hundred euros will be a significant amount of 

money. So, the prospect of gaining or losing hundred euros will most likely move the poor man to 

action. It follows that for him an increment of a hundred euros has a utility significantly greater than 

zero.  

 

In 1738 Daniel Bernoulli derived the utility function for the subjective value of objective moneys by 

way of a variance argument, in which he considered the subjective effect of a given fixed monetary 

increment c  for two persons holding different initial wealths. Based on this variance argument he 

derived the utility function of going from an initial asset position x  to the asset position cx + : 

 

 ( )
x

cx
qcxxu

+
=+ log,         (4.11) 

 

where  q  is some scaling constant greater than zero (Bernoulli, 1738). 

 

In expected utility theory the expected values of the utility probability distributions are maximized. 

Assuming that the decision maker has a total wealth, that is, an actual income and asset portfolio, of 

 

 mM =  euros,         (4.12) 

 

then, using  (4.11), or, equivalently, 

 

 
M

OM
qU i

i

+
= log ,        (4.13) 

 

one may construct from (4.5) and (4.6) the corresponding utility probability distributions as: 
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And 
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The expected outcomes of the utility probability distributions are, respectively (Lindgren, 1993): 
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and 
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The decision theoretical equality 

 

 ( ) ( )
21

,|| DIUEDUE =         (4.18) 

 

represents the equilibrium situation, between the decision to keep the status quo 
1

D  and the 

decision to invest in additional barriers 
2

D . Now, if one substitutes (4.16) and (4.17) into (4.18), then 

one obtains the closed expression for that investment value where one is indifferent between either 

decision: 
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logloglog φθ .     (4.19) 

 

Any investment cost smaller than the numerical solution of I  in (4.19) will turn (4.18) into an 

inequality, where 
2

D  becomes more attractive than 
1

D . It follows that the equilibrium investment 

(4.19) is also the maximal investment one will be willing to make to improve the type II event 

barriers, or, equivalently, (4.19) is the hypothetical benefit of the type II event barrier improvement. 

4.4 The Bayesian Decision Theory Solution 

In Bayesian decision theory the scaled sum of the confidence bounds and the expectation value of 

the utility probability distributions is maximized as the risk measure that captures the position of the 

underlying utility probability distribution (see section 3.3.3): 
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where the lower confidence bound is corrected for undershooting the worst possible outcome a , 

(3.6): 
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and the upper confidence bound is corrected for overshooting the best possible outcome b , (3.10): 
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Substituting (4.21) and (4.22) into (4.20), one obtains the risk index: 
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           (7.23) 

 

where it is noted that the first row of (4.23) corresponds with the expected utility theory criterion of 

choice (Jaynes, 2003), and the fourth row is a kind of adjusted Hurwitz criterion of choice, which may 

differentiate two probability distributions which have the same minimal and maximal values while at 

the same time having an opposite skewness. 

 

In the toy-problem under consideration a simple type II risk scenario is modelled, which is typically a 

high impact low probability scenario; that is, both large monetary costs and small probabilities for 

the high-impact event, or, equivalently, on the impact side (7.1), 0>>x and, on the probability side 

(4.3) and (4.4), 5.0, <<φθ . Stated differently, the utility probability distributions (4.14) and (4.15) 

under consideration will both be highly skewed to the left and, as a consequence, will lead to the 

third condition in (4.23):  
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The best possible outcome under decision 
1

D   is (4.14): 

 

 0=b ,          (4.25) 

 

and the standard deviation of (4.14) is (Lindgren, 1993): 
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 ( ) ( )
m
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θθ .      (4.26) 

 

So, the risk index under the decision to keep the status quo is, substituting (4.16), (4.25), and (4.26), 

into (4.24): 
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The best possible outcome under decision 
2

D  is (4.15): 
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and the standard deviation of (4.15) is (Lindgren, 1993): 
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So, the risk index under the decision invest in additional barriers is, substituting (4.17), (4.28), and 

(4.29), into (4.24): 
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The decision theoretical equality 

 

 ( ) ( )
21

,|| DIURDUR =         (4.31) 

 

represents the equilibrium situation, between the decision to keep the status quo 
1

D  and the 

decision to invest in additional risk barriers 
2

D . Now, if one substitutes (4.27) and (4.30) into (4.31), 

then one obtains the closed expression for that investment value which will leave one undecided: 
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Any investment smaller than the numerical solution of I  in (4.32) will turn (4.31) into an inequality, 

where 
2

D  becomes more attractive than 
1

D . It follows that the equilibrium investment (4.32) is also 

the maximal investment one will be willing to make to improve the type II event barriers, or, 

equivalently, (4.32) is the hypothetical benefit of the type II event barrier improvement. 

 

Note that the ‘Weber-constant’  q   has fallen away in both the decision theoretical equalities (4.19) 

and (4.32). This will hold in general, as both the expectation values and standard deviations in (4.14) 
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and (4.25) are both linear in the unknown constant q . It follows that one may set, without any loss 

of generality, q  equal to one.  

4.5 Some Numerical Results 

In the simple toy-problem one has a decision maker who must decide on how much he is willing to 

invest in further improvements of his type II risk barriers.  

4.5.1 Removing Unsafety 

After the great Dutch flooding in 1953 the ‘Oosterschelde Waterkering’ was built. This was a 

movable dike that allowed for an improved safety from 1001  to 40001 , while keeping the 

Oosterschelde connected to the North Sea. This open connection to the North Sea was decided upon 

in order to keep the salt-sea ecological system of the Oosterschelde river intact.  

 

The total costs of the Oosterschelde Waterkering where about 2.5 billion euros. The bulk of these 

costs where due to the movable character of this dike. Had the Dutch government decided to build 

an unmovable dike, then the costs would only have been about 175 million euros. 

 

The total value of the assets at risk at the time where about  201 th of the GDP at that time,  

 

 91075.3 ×=x  euros.        (4.33) 

 

The wealth of the decision maker, that is, the Dutch government, was about 40% of the Dutch GDP 

at that time, aggregated over a period of five years; five years being the total construction time of 

the movable Oosterschelde dyke: 

 

 11105.1 ×=m  euros.        (4.34) 

 

The status quo probability of a catastrophic flooding had right after the great flood been estimated 

to be, (4.3): 

 

 
100

1
=θ ,         (4.35) 

 

whereas the probability of the catastrophic flooding under the improved flood defences had been 

estimated as, (4.4): 

 

4000

1
=φ .         (4.36) 

 

Substituting the values (4.33) through (4.36) into (4.10), (4.19), and (4.32), one obtains the following 

solutions for the maximal investment willingness, or, equivalently, the hypothetical benefit,  I : 
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• Expected outcome theory: 

o Any sigma level: 6106.36 ×=I  euros 

 

and 

 

• Expected utility theory: 

o Any sigma level: 6100.37 ×=I  euros 

 

and 

 

• Bayesian decision theory: 

o 1-sigma level: 6108.129 ×=I  euros 

o 2-sigma level: 6109.234 ×=I  euros 

o 3-sigma level: 6101.340 ×=I  euros 

 

It is noted here that after the great Dutch flood the discussion was not whether to build additional 

flood defences or not, but, rather, whether or not to choose for the expensive solution over the 

`cheap' solution, which would keep the Oosterschelde salt-sea ecosystem intact. Under expected 

utility theory the cheap solution of an unmovable dyke would have been too expensive by a factor of 

three, whereas under Bayesian decision theory the cheap solution was well within the 2-sigma 

bounds.  

4.5.2 Maintaining Safety 

The current total value of the assets at risk in the Oosterschelde region are about 201 th of the 

current GDP, (39): 

 

 91030×=x  euros.        (4.37) 

 

The wealth of the decision maker, that is, the Dutch government, is about 20% of the current Dutch 

GDP: 

 

 11102.1 ×=m  euros.        (4.38) 

 

If one assumes the current probability of a catastrophic flooding to be 40001 , and if one assumes 

that in the absence of any maintenance the flood defences will have deteriorated such that the 

probability of a catastrophic flooding will have doubled to 20001  five years from now. Then 5 2  is 

the implied ‘doubling’ one year away from the latest maintenance round. Using this doubling factor 

of 5 2 , the probability of a catastrophic flooding becomes, (4.3): 
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4000

25

=θ .         (4.39) 

 

If one assumes that the probability of a catastrophic flooding under the flood defence maintenance 

is our current probability of a catastrophic flooding, (4.4): 

 

 
4000

1
=φ .         (4.40) 

 

Then one has a scenario in which one wishes to prevent a current situation, which is very safe (4.40), 

from sliding into a somewhat less safe situation (4.39).  

 

Substituting the values (4.37) through (4.40) into (4.10), (4.19), and (4.32), one obtains the following 

solutions for the maximal investment willingness, or, equivalently, the hypothetical benefit,  I : 

 

• Expected outcome theory: 

o Any sigma level: 6101.1 ×=I  euros 

 

and 

 

• Expected utility theory: 

o Any sigma level: 6103.1 ×=I  euros 

 

and 

 

• Bayesian decision theory: 

o 1-sigma level: 6109.13 ×=I  euros 

o 2-sigma level: 6109.26 ×=I  euros 

o 3-sigma level: 6108.39 ×=I  euros 

 

It is noted here that in order to obtain the very real safety benefit of preventing the probability of a 

catastrophic flooding of 40001=φ  from sliding to 400025=θ , expected utility theory is not 

willing to invest more than 1.3 million euros, whereas Bayesian decision theory with utility 

transformation, under a 2-sigma safety level, is willing to invest 26.9 million euros for the safety 

maintenance of the Oosterschelde Waterkering.  

 

So it would seem that Bayesian decision theory solution is more commensurate with observed safety 

management practices, seeing that the Dutch government yearly spends about 20 million euros to 

keep the Oosterschelde Waterkering maintained. 
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4.6 Modelling the Disproportionality Factor 

In this chapter we have compared expected outcome theory, expected utility theory, and Bayesian 

decision theory, for a simple toy-problem in which we look at the investment willingness to avert a 

high impact low probability event. We have demonstrated that the adjusted criterion of choice, in 

which scalar multiples of the sum of the lower confidence bound, expectation value, and upper 

confidence bound of the utility probability distributions are maximized, though mathematical trivial 

(van Erp et al., 2015), has non-trivial practical implications for the modelled investment willingness, 

or, equivalently, for the modelled hypothetical benefits.  

 

In closing, based on the numerical results in the previous section it may be argued that it is the 

insufficiency of the expectation value (3.5) as an index of risk that forces a cost benefit analysis to 

introduce disproportionality factors as an ad hoc fix-up (Thomas & Jones, 2010); that is, the 

disproportionality factors are needed in cost benefit analyses because the currently computed 

hypothetical benefits (4.20) may severely underestimate the actual hypothetical benefits (4.32) 

which are computed by way of the more realistic index of risk (4.23). 

 

In the case where one restricts oneself to outcome probability distributions, then the hypothetical 

benefits in a cost benefit analysis are computed as the difference between the expectation value of 

the outcome under the additional safety barriers and the expectation value of the outcome under 

the current status quo, (4.10): 

 

 ( )xI φθ −= .         (4.41) 

 

But under the alternative index of risk (4.23), which not only takes into account the most likely 

trajectory but also the worst and best case scenarios, the corresponding hypothetical benefits may 

be computed as [compare with (4.32)]: 

 

 ( )( ) ( )( )[ ] xkkI φφφθθθ −+−−+= 1212
3

1
.     (4.42) 

 

So, for the outcome probability distributions (4.5) and (4.6) the alternative criterion of choice (4.23) 

implies a theoretical disproportionality factor DF which is the ratio of (4.42) to (4.41): 
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In (Goose, 2006; Rushton, 2006) appropriate disproportionality factors are recommended based on 

common sense considerations. Alternatively, in (4.43) we have an instance where the appropriate 

disproportionality factor may be derived for a specific risk scenario, by comparing the hypothetical 

benefits under the traditional criterion of choice (3.5) and the alternative criterion of choice (4.23).  
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5.0 HIGH IMPACT LOW PROBABILITY EVENTS VS. LOW IMPACT HIGH PROBABILITY EVENTS 

Due to many consistency problems with, on the one hand, predictive risk analysis and expected 

utility theory and, on the other hand, common sense considerations of risk acceptability in some 

well-constructed counter examples, it has been difficult to maintain the case for the feasibility of a 

predictive theory of choice. Even to such an extent that one may read in a text book like (Reith, 

2009) that the utility of the notion of ‘risk’ lies not in its ability to correctly predict future outcomes, 

but rather in its ability to provide a basis for decision-making.  

 

In Van Erp et al.( 2015) it is postulated that it may very well be the insufficiency of the expectation 

value (3.5) as an index of risk: 
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which lies at the heart of the inability of expected utility theory to model are choice preferences. For 

it is found that the alternative risk index (3.18): 
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           (5.2) 

 

accommodates the prospect theoretical counter examples to expected utility theory; i.e. the 

reflection effect and the inverted S-shape in certainty bets (van Erp et al., 2015). Moreover, the 

alternative risk index may also shed some light on some common sense observations like the fact 

that most people judge a HILP (high impact low probability) event as more undesirable than a LIHP 

(low impact high probability) event, even if the expected consequence of the two events would be 

exactly the same. 

 

In this section it will be demonstrated that the alternative risk index (5.2) will assign higher risks to 

HILP (high impact low probability) events than to LIHP (low impact high probability) events, even if 

the expectation values of both events are so constructed that they are equal for both the HILP and 

the LIHP event. 

5.1 Outcome Probability Distributions with Equal Expectation Values 

Say, one has two dichotomous events, of which one is a LIHP, or, equivalently, type I event 
1

T , and 

the other is a HILP, or, equivalently, type II event 
2

T . If (1) the negative consequence of the HILP 

event occurring is n  times the negative consequence of the LIHP event occurring, (2) the 
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consequence of the not-occurring of either event is zero, and (3) the probability of the HILP event is 

an n th fraction of the probability of the LIHP event, that is, 
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Then both outcome probability distributions will admit the same expectation values, that is,  
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Note that in the outcome probability distributions (5.3) and (5.4) the negative consequences are 

represented by positive numbers, rather than negative numbers. As a consequence the risk index 

(60) is to be minimized, rather than maximized. 

5.2 The Risk of the LIHP Event 

Say that the LIHP event has a probability of occurring of     
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1
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Then the expectation value and standard deviation of the corresponding outcome probability 

distribution (5.5) is given as: 
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So the k -sigma confidence bounds of (5.3) under (5.6) are given as (5.7) and (5.8): 
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and 
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If one corrects for lower bound undershoot and upper bound overshoot, then the corrected 

confidence bounds are (5.3) and (5.9): 
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and (5.4) and (5.10): 
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    (5.12) 

 

Substituting (5.7), (5.11), and (5.12) into the left-hand side of (5.2) one obtains a computed risk for 

the LIHP event of: 
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So, for the particular case of (5.3) and (5.6) the alternative criterion of choice (5.2) collapses to the 

traditional expectation value (5.7) as the criterion of choice.  

5.3 The Risk of the HILP Event 

The HILP event has a n  time smaller probability of occurring than the LIHP event, and the 

consequence of the HILP event is n  time larger than the consequence of the LIHP event, (8.3) and 

(8.4). The expectation value and standard deviation of the HILP outcome probability distribution is 

given as (8.5): 
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So the k -sigma confidence bounds of (5.4) under (5.6) are given as (5.14) and (5.15): 
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If one corrects for lower bound undershoot and upper bound overshoot, then the corrected 

confidence bounds are (5.4) and (5.16): 
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and (5.4) and (5.17): 

 

 

( )
( ) ( )

( )









−≥

−<
−+

=





>

≤
=

.12,

,12,
2

121

,|,

,|,|
|

2

22

2

nknx

nkx
nk

nxTkubnx

nxTkubTkub
TkUB

    (5.19) 

 

Substituting (5.14), (5.18), and (5.19) into the left-hand side of (5.2) one may obtain for the HILP 

event the following risk index as function of the chosen k -sigma level: 
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            (5.20) 

 

For both large n , that is, pronounced HILP events, and k -sigma levels in the reasonable range of, 

say, 1 to 6, or, equivalently, ,12121 −<≤− nkn  the risk (5.2) of the HILP event translates to 
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So, for the particular case of (5.4), (5.6), and a variable n  much greater than one, i.e. 1>>n , the 

alternative criterion of choice (5.2) goes to a value which differs markedly from the traditional 

expectation value (5.7).  

5.4 Comparing the Risks of the LIHP and HILP Events 

The LIHP (low impact high probability) event 
1

T  is operationalized in this section as an event having a 

probability of 21  and a loss of x , (5.3) and (5.6). The HILP (high impact low probability) event 
2

T  is 

operationalized relative to the LIHP event as the event which has a probability which is n  times 

smaller and a loss which is n  times x  greater, (5.4) and (5.6); i.e. the more severe the HILP event the 

less likely it occurrence.  

 

The expectation values of the LIHP and HILP events are equal, (5.5). Nonetheless, for a given 

‘severity’ variable n  greater than one, the alternative risk index (5.2) will assign a higher risk to the 

HILP  event than to the LIHP event by a factor of, (5.13) and (5.21): 
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( )122
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1

,|

,|

Risk

Risk

1

2 −+== nk
TkOR

TkOR

LIHP

HILP      (5.22) 

 

If we plot for 6,3,2,1=k  sigma levels the risk ratio (5.22) as a function of the severity variable n , 

we obtain Figure 5.1: 
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In figure 5.1 it can be seen that for a severity variable 000.500=n , or, equivalently, a probability of 
610 −  for the type II event and losses which are an order of magnitude of 000.500  more severe than 

those under a type I event having a probability of 5.0 , and sigma levels of 6,3,2,1=k , one  has 

risk ratios of about 334, 667, 1000, and 2000, respectively, as may be glanced from (5.22): 

 

 k
k

LIHP

HILP 333
3

1102

Risk

Risk
6

≈
−+

= .      (5.23) 

 

So, the adjusted criterion of choice (5.2) – which is the location measure which takes into account 

the probabilistic worst case, expected, and best case scenarios (5.18) – corroborates and quantifies 

the common sense observation that most people judge a HILP (high impact low probability) event as 

more undesirable than a LIHP (low impact high probability) event, even if the expected consequence 

of the two events would be exactly the same. 
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Figure 5.1: Risk Ratios a Function of the Severity Variable n   
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6.0 CONCLUSION 

This report contains a general decision making protocol which is inspired by Bernoulli’s expected 

utility theory. If losses are represented by negative numbers and gains by positive numbers, then it is 

postulated as the most primitive decision theoretical axiom that the action which corresponds with 

the outcome probability distribution which falls most to the right will correspond with the most 

profitable action. So in the proposed decision making protocol actions are chosen on the basis of the 

positions of the respective outcome probability distributions of these actions. 

 

Different measures of position are discussed (and compared) in this deliverable. Based upon that 

discussion (and comparison) it is recommended to take that position measures that is most “fair”, as 

it takes into account not only the most likely scenario (i.e. the expectation value) but also the worst 

case (i.e. the lower bound) and best case scenarios (i.e. the upper bound).  

 

Also, if the non-linearities which are introduced by the current asset position are to be taken 

explicitly into account then it is recommended to use Bernoulli’s utility function as this utility 

function (1) has a proven track record as the Fechner- Weber law, or, equivalently, Stevens’ power 

law, of psycho-physics that describes our sense perception and (2) admits a formal consistency 

derivation (given in Appendix A). 

 

Finally, it has been demonstrated that the alternative criterion of choice which is derived in Chapter 

3 may resolve the consistency problems of the expected outcome and expected utility theories 

when it comes to the perceived difference in riskiness between Low Impact High Probability (LIHP) 

and High Impact Low Probability (HILP) events which have the seem expected outcomes. Moreover, 

it is postulated  that the disproportionality factors of  cost benefit analyses are an ad hoc fix-up for 

the insufficiency
5
 of the expectation value as a criterion of choice. The alternative criterion of choice 

then may lead us to a principled recommendation for the computation of disproportionality factors 

of the cost-benefit methodology.  

  

                                                           
5
 As an aside, the insufficiency of the expectation value as a criterion of choice has proven to be so problematic 

that it has given rise to the scientific field of economic behaviourism. 
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APPENDIX A: CONSISTENT DERIVATION OF BERNOUILLI’S UTILITY FUNCTION 

We will now derive the Bernoulli utility function, or, equivalently, the Weber-Fechner law, or, 

equivalently, in content, Steven's Power law, using the desiderata of invariance and consistency. In 

this we follow a venerable Bayesian tradition (Cox, 1946; Jaynes, 2003; Knuth and Skilling, 2010). 

Say, we have the positive quantities x , y , and z , of some stimulus or commodity of interest. Then 

these quantities, being numbers on the positive real, admit an ordering. So, let quantities be ordered 

as zyx ≤≤ . We now want to find the function f  that quantifies the perceived decrease associated 

with going from, say, the quantity z  to the quantity x . 

The first functional equation is based on the desideratum that the unknown function f  should be 

invariant for a change of scale in our quantities: 

 ( ) ( )cycxfzxf ,, =         (A.1) 

where c  is positive constant. For example, if our quantities concern sums of money, then the 

perceived loss of going from ten dollars to one dollar should be the same perceived loss if we 

reformulate this scenario in dollar cents. 

The second functional equation is based on the desideratum of consistency, in which we state that 

the perceived decrease in going directly from z  to x , ought to be the same perceived decrease in 

going from z  to x  via y : 

 ( ) ( ) ( )[ ]zyfyxfgzxf ,,,, =        (A.2) 

For example, if our quantities concern sums of money, then the perceived loss of going from ten 

dollars to one dollar should be the same perceived loss if we first go from ten dollars to five dollars, 

and then from five dollars to one dollar; seeing that in both scenarios we start out with an initial 

wealth of ten dollars, only to end up with a current wealth of one dollar. 

The general solution to (A.1) is (van Erp et al., 2016a):  

 ( ) 







=

y

x
hyxf ,          (A.3) 

were h  is some arbitrary function. The general solution to (A.2) is (Knuth and Skilling, 2010): 

 ( )[ ] ( )[ ] ( )[ ]zyfyxfzxf ,,, Θ+Θ=Θ       (A.4) 

where Θ  is some arbitrary monotonic function. Moreover, because of this arbitrariness, we may 

define Θ  as (Knuth and Skilling, 2010): 

 ( ) ( )uu Ψ=Θ log ,        (A.5) 

where Ψ  itself is also arbitrary and monotonic. Using (A.5), we may rewrite (A.4), without any loss 

of generality, as 

 ( )[ ] ( )[ ] ( )[ ]zyfyxfzxf ,log,log,log Ψ+Ψ=Ψ      (A.6) 

or, equivalently, by exponentiation of both sides of (A.6), 

( )[ ] ( )[ ] ( )[ ]zyfyxfzxf ,,, ΨΨ=Ψ       (A.7)  

Substituting (A.3) into (A.4) through (A.7), and letting, respectively, 
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and 
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 we obtain the equivalent functional equations: 
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and 
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If we assume differentiability, then (A.10), together with the two boundary conditions: 

 ( ) 0, =







=

x

x
xxf θ         (A.12) 

and 

 ( ) 0, <







=

y

x
yxf θ ,  for yx < ,     (A.13) 

is sufficient to find the function f  that quantifies the perceived decrease associated with going from 

the quantity y  to the quantity x . This function f  turns out to be Bernoulli's utility function, or, 

equivalently, the Weber-Fechner law of sense perception: 

 ( )
y

x
qyxf log, = ,  for 0>q ,     (A.14) 

where y  is our initial asset position and x  is the final asset position, and q  is some arbitrary 

constant which has to be obtained by way psychological experimentation.  

So, Bernoulli's utility function (A.14) is the only function that adheres to the desiderata of unit 

invariance and consistency, respectively, (A.1) and (A.2), and the boundary conditions that a zero 

change should lead to a zero perceived loss and that a perceived loss should be assigned a negative 

value, respectively, (A.12) and (A.13). Any other utility function will be in violation with these 

fundamental desiderata and specific boundary conditions.  

Note that Fechner re-derived (A.14) in 1860 as the law that guides our sensory perception. In the 

years that followed (A.14) proved to be so successful, as it, amongst other things, gave rise to our 

decibel scale, that it established psychology as a legitimate experimental science (Fancher, 1990).  

But as Fechner was very careful, for reasons of aesthetics, or so we hazard to guess (van Erp et al., 

2015), to apply his Weber law, which later became the Fechner-Weber law, only to non-monetary 

stimuli, the implied universality of (A.14) was not recognized for the longest time. However, because 

of the here given consistency derivation of (A.14), it is now shown that the Fechner-Weber, or, 

equivalently, Bernoulli's utility function, is one of the consistent functions that quantifies the 

distance between x  and y ; thus, explaining the universal applicability of Bernoulli's utility function.  

The other consistent distance function is Steven's power law, which may be derived as follows. If we 

assume differentiability, then (A.11), together with the two boundary conditions: 

 ( ) 1, =







=

x

x
xxf ψ         (A.15) 

and 

 ( ) 1,0 <







=<

y

x
yxf ψ ,  for yx < ,     (A.16) 

is sufficient to find the function f  that quantifies the perceived decrease associated with going from 

the quantity y  to the quantity x . This function f  turns out to be Steven's power law:  
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 ( )
q

y

x
yxf 








=, ,   for 0>q ,     (A.17) 

Where y  is our initial asset position and x  is the final asset position, and q  is some arbitrary 

constant which has to be obtained by way psychological experimentation. 

So, Steven's power law (A.17) is the only function that adheres to the desiderata of unit invariance 

and consistency, respectively, (A.1) and (A.2), and the boundary conditions that a zero change 

should lead to a ratio of one between the initial and final asset position and that a perceived loss 

should be assigned a value smaller than 1, respectively, (A.15) and (A.16). Any other utility function 

will be in violation with these fundamental desiderata and specific boundary conditions.   

We summarize, given the desiderata (A.1) and (A.2), the Fechner-Weber law (A.14) results from the 

boundary condition that negative increments result negative utilities and a zero increment results in 

an utility of zero, (A.12) and (A.13); whereas Steven's power law (A.17) results from the boundary 

condition that utilities must be greater than zero and that a zero increment results an utility of one, 

(A.15) and (A.16). Stated differently, the Fechner-Weber law and Steven's power law are both 

equivalent in content, differing only in the proposed utility scale. A subtlety that seems to have been 

overlooked by some, seeing that the Fechner-Weber law versus the Steven's power law has been a 

source of controversy in psycho-physical community (Stevens, 1961). 

In closing, It may be read in (Jaynes, 2003), that to the best of Jaynes'  knowledge, there are as of yet 

no formal principles at all for assigning numerical values to loss functions; not even when the 

criterion is purely economic, because the utility of money remains ill-defined. In the absence of 

these formal principles, Jaynes final verdict was that decision theory cannot be fundamental. The 

Bernoulli utility function, initially derived by Bernoulli, by way of common sense first principles 

(Bernoulli, 1738), has now been derived by way of a consistency argument.  

This consistency argument explains why it is that Bernoulli's utility function, both in its original 

Fechner-Weber law and in its alternative Steven's power law form, has proven to be so ubiquitous 

and successful the field of sensory perception research; simply because human sense perception, 

like the laws of Nature (Knuth, 2014b), adheres to the desideratum of consistency.  

 


