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Executive Summary 

Landslides are typically triggered by intense or prolonged rainfall. A rainfall threshold, as it relates to 

landslides, is the amount of rainfall required to trigger slope failure. In order to inform early warning 

systems, manage risk and put mitigation strategies into effect in a timely manner, it is necessary to 

predict where and when landslide will occur.  

Based on a landslide susceptibility map developed in Deliverable 5.2 and a suite of rainfall data, a 

Random Forest (RF) algorithm was used to develop a model to predict rainfall threshold values for 

the Piedmont region of Italy. This model can be used to predict the distribution of rainfall required 

to trigger landslides within the next 24 hours. The promising results of this model suggest that RF 

can be used as part of an early warning system which indicates the locations of highly susceptible 

areas based on measured and forecast rainfall.        

Based on historical rainfall data, the model can also be used to ‘stress-test’ the system. By 

identifying different rainfall return periods it is possible to test how the distribution of areas which 

are at risk of landslide occurrence changes (and its size increases) with rainfall events of increasing 

magnitude.  

 

 

 

 

 



INFRARISK 

Deliverable D6.4  Suitability of data-mining models for stress tests 

© The INFRARISK Consortium  iv 

 

Table of Contents 

1.0 INTRODUCTION ................................................................................................................ 1 

2.0 METHODOLOGY ............................................................................................................... 2 

2.1 Random Forest ........................................................................................................................... 2 

2.2 Study area .................................................................................................................................. 4 

2.3 Landslide Inventory data ............................................................................................................ 5 

2.4 Rainfall data ............................................................................................................................... 5 

2.5 Training and validation datasets ................................................................................................ 6 

2.6 Scenario testing .......................................................................................................................... 7 

3.0 RESULTS ........................................................................................................................... 8 

3.1 Rainfall thresholds ...................................................................................................................... 8 

3.2 Scenario testing ........................................................................................................................ 11 

4.0 DISCUSSION AND CONCLUSION ...................................................................................... 15 

5.0 REFERENCES ................................................................................................................... 18 

 

 

 

 

 

 

 



INFRARISK 

Deliverable D6.4  Suitability of data-mining models for stress tests 

 

© The INFRARISK Consortium  1 

 

1.0 INTRODUCTION 

In Italy, landslides are typically triggered by intense or prolonged rainfall (Giannecchini et al., 2012). 

A rainfall threshold, as it relates to landslides, is the amount of rainfall required to trigger slope 

failure. In order to inform early warning systems, manage risk and put mitigation strategies into 

effect in a timely manner, it is necessary to predict where and when landslide will occur. There are 

two primary approaches to predicting landslide occurrence based on rainfall thresholds. The first are 

physical, process-based models (e.g. Wu et al., 2015) and the second are empirical models (e.g. 

Vallet et al., 2015). Physical models require in depth geotechnical characterisation of an area, which 

is both time consuming and expensive. For this reason, the use of physical models is typically 

restricted to small, high risk areas. Empirical studies use recorded instances of landslide occurrence 

and measured rainfall. They can generally be applied to much larger regions. The geographic extent 

of an empirical rainfall threshold model is determined by the geographic extent of the data used to 

train the model.  

Determining empirical rainfall thresholds is a complex process. Typically, empirical models use 

rainfall duration, intensity and antecedent rainfall to make predictions of threshold values 

(Giannecchini et al., 2012). Rainfall thresholds are place dependent, as across a given region the 

relationship between duration, intensity and antecedent rainfall will vary spatially based on a suite 

of geomorphological attributes (e.g. slope, elevation, land use). Moreover, Dahal, & Hasegawa 

(2008) state that a threshold is normally the value above which an event occurs 100% of the time. 

For landslides, however, the minimum amount of rainfall required to trigger an event is also of 

(possibly more) interest.  

As stated, empirical thresholds are derived from the complex interactions between rainfall duration, 

intensity, antecedent rainfall and a host of geomorphological factors. The data used to derive these 

thresholds (i.e. records of historic landslides) generally covers a relatively small area within a large 

region for which the model is being developed. As such, even with large amounts of training data, 

there may be relatively few instances of landslides triggered with under similar geomorphological 

and rainfall conditions. This makes predicting rainfall thresholds across space problematic; however, 

it is necessary as without this approach, the model will fail to represent how changes in the 

landscape will affect rainfall thresholds. The process is further complicated by the issue that there 

are many different types of landslides and different rainfall patterns can be associated with each 

type. As a generalisation, shallow landslides or debris flows are triggered by shot bursts of intense 

rainfall, whereas deep landslides are initiated by prolonged rainfall (Martelloni et al., 2012). A 

comprehensive overview of the multitude of types and triggering processes which can occur is 

available from Varnes (1978).   

Another issue concerning the use of rainfall thresholds to inform early warning systems is the spatial 

resolution of prediction. Traditionally, when a threshold was set to be exceeded, a warning would be 

issued for the entire area from which landslide samples were taken to calibrate the model (Segoni et 

al., 2015). As the spatial resolution of rainfall data is always much larger than that of the landslide 

area, this is problematic, as in order to be effective, an early warning system requires a greater 

degree of spatial accuracy. The challenge is to refine the spatial resolution of landslide threshold 

predictions and develop spatially distributed thresholds that incorporate changes in 

geomorphological conditions (Li et al., 2010). For this reason, it is preferable to have a range or 
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mosaic of threshold predictions across a given region. While this does not provide the exact location 

of future landslides, it substantially narrows the areal extent (Segoni et al., 2014).  

The purpose of this Deliverable is to build upon the landslide susceptibility maps developed in 

Deliverable 5.2 to assess the suitability of a data mining approach for the development of empirical 

models that predict the spatio-temporal occurrence of landslides based on rainfall conditions. 

Suitability will be assessed by model cross-validation and independent validation using date from 

landslides-triggering rainfall events that were not used to train the RF model. The suitability of RF 

models fro stress testing will be demonstrated using a set a rainfall of scenarios. In keeping with the 

models developed in Deliverable 5.2, a Random Forest data mining algorithm is used to develop 

these models. Later on in this deliverable, a useful application of the RF rainfall threshold model 

which has been developed is to test how certain rainfall scenarios, such as major rainfall events may 

lead to future landslides. This is essential a landslide occurrence ‘stress test’ based on rainfall return 

periods. 

2.0 METHODOLOGY 

2.1 Random Forest 

The Random Forest algorithm is based on an ensemble of decision trees, which aim to classify data 

by recursive partitioning based on some explanatory variable (Figure 1). Decision trees use a set of 

binary rules to predict a target value, based upon a set of training data containing all data on the 

conditioning factors (represented by the root node). In this instance the target value is species of iris 

taken from Fisher’s famous Iris dataset (Fisher, 1936). 

The algorithm determines both the conditioning factor which most accurately separates the data 

into species and the threshold value at which to split data. Using the example in Figure 1, petal 

length is used to as the conditioning variable used to split data in the root node (all the training 

data). In this example, the threshold value is a length of 2.45 cm. Below this length all records are 

classified as ‘setosa’, above this length further splitting is required to determine species type.  

Splitting will stop when an internal nodes contains data of only one class (i.e. all the data has been 

classified). This becomes a terminal node and is classified as a species. If we wanted to predict new 

data using this model, there would be a lot of misclassification as the model is so finely tuned to a 

single dataset that it would not be generalise well. To ensure RF models can predict new data, they 

use an ensemble of decision trees. If the same data was used at the root node and at each split, each 

decision tree would be identical, making an ensemble pointless. For this reason, RF uses a different 

subset of the data to train each tree in the ensemble and limits the number of conditioning factors 

that can be used for splitting at each node. Predictions are made based on the majority vote of all 

trees in the forest (Breiman, 2001).  Bootstrap sampling is used to generate the random subsets of 

data, which are drawn from the full dataset with replacement.  
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Figure 1: An example decision tree used for classification of Fisher’s Iris dataset (Fisher, 1936) 

 

More formally, we have a training dataset �  comprising �  records. �  contains all the geo-

environmental data (�) and all the landslide data (�). The landslide data ��, Y�, … Y
 are binary, 

indicating the presence or absence of landslides (it should be noted that if a model was trained for a 

different purpose, for example to predict the size or volume of a landslide, it is possible to model the 

target variable as continuous rather than nominal). For each landslide sample, there is a 

corresponding list of environmental variables taken from the same location.  If ���, ���…	X�
 

represent slopes, then X�� is the slope at Y�.  

To fit a Random Forest made up of � decision trees, we first generate � equally sized datasets using 

bootstrap sampling (T�	, T�…	T�). This method draws samples with replacement, meaning each 

dataset T�  will contain many duplicate data records and also have many missing records in 

comparison to the training data. A decision tree is trained using each of the sample datasets. The 

number of variables that might be used to split each node is limited to a subset of the total number 

of variables available (e.g. at every node, splits are made using the best of a limited selection of 

variables). Classes are predicted using a majority vote based on all trees in the forest. Training many 

trees using subsets of the entire training dataset and using only a limited number of variables at 

each node prevents overfitting. Each dataset (T�	, T�…	T�), trains a corresponding decision tree 

(D�	, D�…	D�). When classifying data, it passes through each tree (D�	, D�…	D�) and its class is 

determined by a majority vote of all trees. The proportion of votes that a class receives is also used 

to determine the probability of class membership (Boström, 2007). This is useful for Landslide 

Susceptibility Mapping (LSM) as it allows predations for be visualised on a continuous scale (e.g. 

probability of landslides between 0-1) rather than just visualising as susceptible or non-susceptible.   

In the model, two parameters need to be determined. These are the number of variables considered 

for splitting each node (mtry) and the number of trees in the forest (N). It is important to set ntree 

to a number large enough that the algorithm is stable, but not so large as to become 

computationally expensive. This parameter can be tuned. In this study ntree was set at 200 based on 

experimental results which echoed the findings of of Latinne et al. (2001). The mtry parameter is the 
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primary control on the classification accuracy of the model, as it determines both the correlation 

between any two trees in the forest and the predictive power of each individual tree.  

Some variables are better predictors of susceptibility than others, and the best predictors will be 

selected as a splitting variable at nodes more frequently than worse predictors. For example, if 

elevation is the key determinate of landslide susceptibility it will be selected for splitting most 

frequently. The more variables tested at each node, the greater chance that the most influential 

variables will be selected. This makes an individual tree a stronger predictor, however, it makes 

individual trees more likely to be highly similar to one another. This means that when averaging 

across the forest the variance of the model will be high, leading to errors in predicting new data.  

Increasing mtry will increase the predictive accuracy of individual trees (increasing overall predictive 

accuracy of the RF) and increase correlation between trees (decreasing overall predictive accuracy of 

the RF). To balance these effects and find an optimal value, it is necessary to test a number of mtry 

values. Liaw & Wiener (2002) suggest that using the square root of the number of predictor variables 

in the model for an initial value of mtry is a good place to begin parameter testing, a 70:30 split 

between training and validation data is also suggested.   

2.2 Study area 

To demonstrate the efficacy of RF for spatio-temporal landslide prediction based on rainfall 

thresholds, the method has been applied to the case study region of Piedmont, a 25402 km² region 

in northwest Italy (Figure 2). Since 1950, in Italy the economic cost of landslides has been more than 

53 billion Euros. This region is of particular interest as Piedmont has been identified as being within a 

landslide ‘hotspot’ (Jaedicke et al., 2014). For this reason it is an area that may particularly benefit 

from the development of a model capable of predicting the spatio-temporal location of future 

landslides.   
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(A) (B) 

Figure 2: (A) Location of Piedmont study area within Italy (B) Location of landslides associated with 

rainfall events and location of rainfall raster centre points. 

2.3 Landslide Inventory data 

The landslide inventory used in this study is SiFRAP (Sistema Informativo Frane in Piemonte- 

Landslide information system in Piedmont) is a dataset containing 30439 landslides dating from the 

early 20th century to 2006, mapped at a scale of 1:10000 (Lanteri & Colombo, 2013). This is an 

update of the IFFI (Inventario dei fenomeni franosi in Italia- Inventory of Landslide in Italy) project 

(Amanti et al., 2001). A comprehensive description of the classification taxonomy is available from 

SiFRAP (2009). Most of the landslides have not been dated, meaning it is impossible to associate 

them with rainfall conditions. There are however 3636 dated landslides in the SiFRAP dataset which 

are associated with caused by eight rainfall events (the majority of these landslides, however, were 

caused by a highly significant rainfall event on 05/11/1994). The locations of these landslides are 

shown in Figure 2B.  

2.4 Rainfall data 

The majority of landslides in Italy are triggered by rainfall (Aleotti, 2004). To apply RF models to the 

prediction of rainfall thresholds, spatial measurements of rainfall and dated instances of landslides 

are required. The RF model relates landslide occurrence with rainfall intensity, duration, antecedent 

conditions and the propensity for landslide occurrence (susceptibility). The daily rainfall data on a 

25km grid was taken from the European Climate Assessment & Dataset (Hofstra et al., 2009). A total 

of 64 grid cells can be used to characterise the Piedmont region. The centre points of each grid 

square are shown in Figure 2B.   

¯

0 50 10025 Km
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Input data Description 

Rainfall data Rainfall data on a 25km grid was taken from the European Climate 

Assessment & Dataset. For each grid cell that covered the Piedmont 

region (64 in total), had daily rainfall recorded derived from measured 

data, spanning from 01/01/1950 to 31/12/2014. Empirical thresholds 

typically based on rainfall intensity and duration metrics, however, in this 

instance; data covering Piedmont was limited to daily temporal 

resolution. For this reason, both the rainfall on the day that the landslide 

occurred and the previous day’s rainfall are considered (as well as 

antecedent rainfall, average annual rainfall and susceptibility). While 

hourly data is typically used to predict empirical thresholds, the 

advantage of using daily data is that the data are freely available at the 

European scale, meaning if models are successfully developed for 

Piedmont they can potentially be developed for any other region in 

Europe.      

 

Average annual rainfall Average annual rainfall (AAR) taken at the 64 cell location is calculated 

based on daily rainfall values between 01/01/1950 to 31/12/2014. AAR is 

commonly used to differentiate between areas that typically experience 

high rainfall and those that do not (Giannecchini et al., 2012). 

Antecedent rainfall  Previous rainfall and subsequent soil moisture conditions are an 

important factor which will influence the rainfall thresholds required to 

trigger landslides (Wieczorek & Glade, 2005). The precise effects are 

difficult to quantify and will depend on physical soil characteristics, in 

particular soil permeability. In soils with high permeability, antecedent 

rainfall is not considered a significant predictor of landside occurrence, 

however, in soils with low permeability, antecedent rainfall can have a 

marked effect on pore-water pressure and hence the amount of rainfall 

required to trigger a landslide (Aleotti, 2004). Generally, the 

intensity/duration of rainfall required to trigger shallow landslides 

decreases as antecedent rainfall increases. The number of days over 

which antecedent rainfall is considered relevant ranges from three (Dahal, 

& Hasegawa, 2008) to over 50 (Giannecchini et al., 2012). After testing, 

the optimal length of antecedent rainfall considered in this study was 10 

days, which reflects the findings of Crozier (1999) and Glade at al. (2000).   

Landslide susceptibility Landslide susceptibility maps (LSM) show the relative probability of 

landslide occurrence across space without considering temporal 

probability. This can be used to identify the likely areas that a landslide 

will occur given a rainfall event large enough to trigger mass movement. A 

landslide susceptibility map for Piedmont was developed in Infrarisk 

Deliverable 5.2.  

Table 1: Input data description 

2.5 Training and validation datasets 

This study will present landslide threshold predictions and spatio-temporal predictions of landslide 

occurrence at a 100 m² resolution grid cell format. Although the rainfall data are on a 25 km² grid, 

the susceptibility map developed in Infrarisk Deliverable 5.2 is at 100 m² resolution. A finer 

resolution may be more useful for decision makers when planning mitigation strategies and issuing 



INFRARISK 

Deliverable D6.4  Suitability of data-mining models for stress tests 

 

© The INFRARISK Consortium  7 

 

landslide warnings. As the purpose of the model is to identify thresholds values for the initiation of 

landslides, a seed cell sampling approach was used (Yilmaz, 2010). Each of the 3636 landslides which 

were known to be associated with a specific rainfall event were sampled once to create a training 

dataset. The location of the sample was taken from the highest elevation point that intersected each 

landslide footprint after the landslide locations had been overlaid on a 100 m² resolution digital 

elevation model (DEM). This method of landslide sampling is used to best represent the pre-failure 

conditions. Landslide susceptibility, rainfall on the day that the landslide occurred, rainfall on the day 

before the landslide occurred, antecedent rainfall (previous 10 days) and average annual rainfall is 

then samples for each of the 3636 points, creating a training dataset.  

These data will be used to train the RF models, however, as RF is essentially a black-box modelling 

procedure (meaning it is difficult to interpret how variables interact within the model and hence 

how predictions are made), it is important to validate results. As there are limited training data, 10-

fold cross validation using the caret package in R will be used to assess the accuracy of the models. 

Results will be further validated using landslide from a further two rainfall events. 218 landslides 

associated with a rainfall event on 24/08/1987 and 34 landslides associated with a rainfall event on 

14/10/2000 will be used to independently validate threshold predictions. While it would be 

preferable to validate the model with more rainfall data, the lack of dated landslides in the inventory 

prohibits this in this instance. If more data became available (future landslides recorded) then the 

model can be further validated. The known rainfall conditions leading to these landslides will be 

used to predict threshold values. Areas in exceedance of the threshold can be compared to the 

known location of landslides. Overlap between threshold exceedance and landslide location 

(234/252 of the landslides occurred in areas that exceeded the threshold values) suggests the 

models are performing well.  

2.6 Scenario testing 

A useful application of the RF rainfall threshold model which has been developed is to test how 

certain rainfall scenarios, such as major rainfall events may lead to future landslides. This is essential 

a landslide occurrence ‘stress test’ based on rainfall return periods. A return period is an estimate of 

the likelihood of an event, usually based on historic data over a long time period. The return period 

is the inverse of the probability that an event will be exceeded in any one year. In this case it is used 

to estimate the magnitude of a rainfall event. For example, a 10 year rainfall event has a 1/10 or 0.1 

probability of being exceeded in a given year. The use of return periods are frequently applied in 

risk-assessment methods as structures and mitigation strategies are designed to withstand an evet 

of a given return period.  

For each of the 64 rainfall points covering the study area, rainfall return periods ranging from five to 

200 years were calculated. First daily rainfall data between 01/01/1950 to 31/12/2014 was 

converted into a time series using the R package “hydroTSM” (Zambrano-Bigiarini, 2014). Then the 

rainfall data was fit to a Gumbel univariate extreme value distribution function using the “exTremes” 

R package (Gilleland & Katz, 2011). This was used to estimate the magnitude of the various return 

period rainfall events over a 2h-hour period. 
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3.0 RESULTS 

3.1 Rainfall thresholds 

Predicting when landslides will occur is challenging, as when a landslide occurs on a slope for the 

first time, the slope is in ‘peak strength’ conditions, whereas, a subsequent landslide occurs 

somewhere between peak and residual strength. The two states may have little relation with each 

other, as once a landslide has occurred, the geomorphological conditions at a given slope may have 

changed considerably (Guzzetti et al., 1999). In terms of thresholds, this means that two identical 

slopes (given that most of the conditioning factor data is considered static for the purpose of this 

analysis) could have very different rainfall thresholds if one of the slopes has previously experienced 

a landslide. This data is not available as the undated landslides in the inventory make it impossible to 

specify whether overlapping landslides occurred before or after a dated event.  

Due to a lack of data, the RF model to predict rainfall thresholds was validated using 10-fold cross 

validation. This gave an R² value of 0.94 suggesting that the model is highly accurate. RF minimises 

the chances of overfitting by only drawing on a subset of both the training data to build each tree 

and only testing a subset of predictor variables at each split. To further ensure the model has not 

been overfit, independent validation is used. Validation using independent data is limited to two 

rainfall events, relating to 252 landslides due to a lack of data, however, Figure 3 and Figure 4 act as 

proof of concept for two independent landslide-triggering rainfall events. Moreover, in another 

Italian case study, four rainfall events were deemed sufficient to develop empirical rainfall 

thresholds without validation (Aleotti, 2004). Figure 3 shows the predicted rainfall threshold and 

observed rainfall triggering event for 24/08/1987. The difference between the two shows the level 

of threshold exceedance. Landslides observed on 24/08/1987 were located in an area of high 

exceedance. While there are no landslides shown in the areas of ‘high exceedance’ (e.g. the South 

East corner of the region) this does not mean that they did not occur, rather it could be that they 

were not recorded in the inventory. As the quality and completeness of the landslide inventory used 

is difficult to quantify, independent validation will always have limitations.          
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Figure 3: Rainfall thresholds, observed rainfall and levels of exceedance for 24/08/1987 

 

Figure 4 shows the predicted rainfall threshold and observed rainfall triggering event for 

14/10/2000. The difference between the two shows the level of threshold exceedance. Landslides 

observed on 14/10/2000 were located in an area of medium exceedance. The issue for validation 

using this method is the lack of dated landslide data as well as an incompleteness of landslide 

inventory data. For example, in Figure 3 there is a second area of high exceedance in the East of the 

stud area. It is possible that despite this, no landslides occurred and the prediction in that area is 

wrong. It is also possible that landslides did occur and appear in the inventory but are not dated. It is 

also possible that landslides did occur but were not reported/recorded. On the strength of the dated 

landslides within the inventory, is it difficult to dismiss the predictions as incorrect, it is only possible 

to confirm that the accuracy of the thresholds using observed landslides (of which there are 

relatively few in the region).             
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Figure 4: Rainfall thresholds, observed rainfall and levels of exceedance for 14/10/2000 

 

Despite the limitations on validation, the results show that a RF data mining model is a promising 

technique for rainfall threshold prediction for landslide triggering. Potentially, this could be 

developed into an early warning system to identify areas which may be affected by landslides on a 

day-to-day basis. This would require the integration with a forecasting system to compare rainfall 

predictions with threshold values.  

Models were trained in R using the RandomForest package (Liaw & Wiener, 2002). The computer 

used to train the models had an Intel(R) Xeon(R) CPU E5520  @ 2.27GHz, 2261 Mhz, 4 Core(s), 4 

Logical Processor(s) and 12.0 GB installed physical memory (RAM). Training the model on a data 

frame with 335544 rows and 20 columns took 792.56 seconds. Making predictions for 2538135 

records took 105.77 seconds. This shows that this modelling approach may be scaled to larger 

domains  
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3.2 Scenario testing 

The daily and monthly rainfall time series for a single point are plotted in Figure 5. The results of 

fitting these data to a Gumbel distribution are shown in Figure 6. This procedure was repeated for all 

64 rainfall points covering the Piedmont study area.  

 

 

Figure 5: Daily and monthly rainfall time series measurements for a single rainfall point covering the 

Piedmont region 

Fitting the Gumbel distribution to the rainfall time series data of each point means it is possible to 

calculate the magnitude of rainfall associated with any return period.  
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Figure 6: Fitting a Gumbel distribution to the rainfall time series data 

For this study, the 5, 10, 50, 100 and 200 year rainfall return periods are mapped in Figure 7. These 

show daily rainfall ranging from 26 mm for the lowest 5 year return period value in Piedmont, up to 

119 mm the highest 200 year return period value.  
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Figure 7: Daily rainfall values at return periods ranging from 5 to 200 years.

To see how these return values compare to 

further rainfall values (e.g. previous day and antecedent rainfall values). The v

mean values from the 3636 previously recorded landslides which can be thought of as 
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Figure 8: Rainfall threshold exceedance based on 
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5 to 200 year return period rainfall events. 
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4.0 DISCUSSION AND CONCLUSION 

Results have demonstrated that RF modelling has substantial potential for the development of 

empirical rainfall threshold predictions and hence the implementation of early warning systems. The 

cross validation results show that the model is highly accurate and the independent validation shows 

strong correlation with recorded events (234/252 of the landslides occurred in areas that exceeded 

the threshold values).  

There are, however, further issues to address. Validating results is not straightforward. Much like the 

independent validation in this report, Li et al. (2010) produced predictive grids using a neural 

network modelling approach and validated results by comparing areas where landslides occurred 

with grid cells where the probability of threshold exceedance was beyond 0.7. While this method 

found good agreement between threshold exceedance and the location of landslides, it did not 

report the locations of ‘false positive’ results. These are the areas shown to exceed threshold values 

where no landslides were recorded. To be effective as a warning system, false positive results should 

be minimised, however, the issue is further complicated by the quality of the landslide inventory 

used. The IFFI landslide inventory is a comprehensive record of landslide occurrence in Italy between 

the early 20th century to 2006, but even in this inventory, not every landslide that has occurred will 

be recorded. This means that when validating results it is not certain that areas where the threshold 

was exceeded didn’t experience a landslide, even if it is not recorded in the inventory. This problem 

is compounded if the landslide inventory used for validating predictions is less complete. To improve 

models, more detailed landslide data is required and more independent validation is needed. 

Moreover, future work is needed to investigate which data mining technique is best applied to 

model rainfall thresholds. 

Although RF is a black box modelling technique, meaning it is very difficult to establish how the 

predictor variables interact it does have the advantage of being able to rank variables in order of 

their contribution to the models predictive accuracy (Liaw & Wiener, 2002) (Figure 9). The most 

critical predictor of rainfall threshold is the previous day’s rainfall, with the previous 10 day’s rainfall 

also an important factor. The average annual rainfall (AAR) and prior susceptibility are less 

influential. This is to be expected, as susceptibility and AAR are static properties in the region 

whereas antecedent and previous day’s rainfall vary spatio-temporally and it is probable that they 

will be highly correlated to the rainfall threshold on the day of landslide occurrence.      
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Figure 9: Ranking of predictor variable importance  

Scenario testing for various return period rainfall events can be a useful tool to identify the areas 

most at risk of landslide occurrence. This is also interesting as it can be indicative as to how 

situations can change in the future. Given current climate change trends, it is likely that the 

magnitude of current 50 or 100 return period events will change to lower return period events. That 

is to say the region will experience high magnitude rainfall events more frequently. Potential 

changes are of interest as in this region, the majority of landsides are triggered by rainfall events in 

exceedance of the 50-year return period (Alotti, 2004). If this magnitude rainfall occurs more 

frequently, it is likely that landslide will also occur more frequently.  

The results of the threshold predictions and scenario tests are promising for the implementation of a 

RF modelling approach to inform an early warning system, however, the model does require further 

refinement. The threshold values are exceeded readily which means widespread warnings would be 

issued for even the five year return period rainfall event. One option would be to focus on the areas 

where the exceedance is greatest, however, this approach would require further validation.   

Results suggest RF models have a great deal of potential for the analysis of spatio-temporal data 

relating to natural hazards. Predicting the spatio-temporal relationship between infrastructure 

behaviour and natural hazards using data mining techniques is limited by data availability. For 

example, most of the datasets are held by insurance companies and mainly concern the financial 

cost of damage to infrastructure. Detailed data on the nature of the damage, duration of repair or 

effect on functionality are typically not available, especially in the quantity that would make a data-

mining modelling approach feasible (i.e. a minimum of many hundreds of instances). Where these 

data are available, RF should be considered a suitable data-mining algorithm for the development of 

predictive models. The general lack of data is currently a stumbling block preventing the widespread 

adoption of data-mining modelling techniques of the prediction of the spatio-temporal relationship 

between hazard and Infrastructure. A further limitation with RF (common with all data mining 

models) is that they are not readily applied in areas beyond the geographic extent of the training 

data used in their development. Models would need to be trained again, or at least validated using 
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data from the new area. For Infrarisk this means that it is not possible to apply models developed in 

Italy to the Croatian case study.  

One topic of considerable interest is outlier prediction, which can be used to predict infrastructure 

failure (e.g. the collapse of a bridge). If enough empirical data were available (e.g. bridge structural 

parameters, hazard data and data on infrastructure damage/functionality) then, again, RF can be a 

useful tool to predict failures.     
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