

Case Studies: TEN-T Road and Rail Networks

Julie Clarke, Robert Corbally Roughan & O'Donovan Ltd. Dublin, Ireland

Final Dissemination Conference

29th September 2016, DRAGADOS, Madrid, Avda. Camino Santiago 50, 28050 Madrid, Spain

Case Studies: Aims and Objectives

Risk Profiling of Natural

Hazards and Infrastructure Single Risk Assessment Overarching Risk **Assessment Space-Time Modelling of Case Study** Methodology **Structural Behaviours and** Simulation **Natural Hazards Stress Tests for Multi-Risk Scenarios** Implementation Strategy

Critical European Road and Rail Infrastructure

Trans-European (TEN-T) Network

Stress Tests due to Natural Hazards

- Physical damage
- Travel disruption
- Losses

Stress Tests

General process to ensure acceptable levels of risk:

Stress Tests

General process to ensure acceptable levels of risk:

Stress Tests

Conduct Risk Assessment:

- Low probability, high consequence seismic scenarios
- Cascading landslide hazard effects
- Direct and indirect consequences

- Low probability, high consequence seismic scenarios
- Cascading landslide hazard effects
- Direct and indirect consequences
- Quantitative risk assessment

Spatial Boundaries

- 3140 km roads
- Area 990 km²
- Metropolitan area of Bologna

Seismic Hazard Model

- Ground-motion fields
 - Seismic activity model
 - Ground motion model
 - > Hazard level
 - ➤ Percentile of extreme ground motion values at reference site (shown in red)

Seismic Hazard Model (Stress Test)

- Example GM field
 - > SHARE Active
 - Low attenuation ground motion
 - ➤ 10,000 year return period
 - > 90% fractile
- Linked to 'critical network element'
 - > Betweenness centrality method

Earthquake-triggered landslides

- Rigid sliding block approach
 - ➤ Landslide yield acceleration values (k_y)

Network Vulnerability

- 340 bridges, 30 tunnels
- 10m road sections on slopes >10°

Network Element	Hazard
Bridges	Earthquakes
Tunnels	Earthquakes
Road Sections	Earthquake- triggered landslides

Network Vulnerability - Bridges and Tunnels

- Structural data gathered using Google Maps
- Four damage states defined
 - Slight
 - > Moderate
 - > Extensive
 - Complete

Fragility functions assigned based on existing database

Network Vulnerability - Road Sections

- Three damage states defined
 - > Slight
 - ➤ Moderate
 - Extensive/Complete
- Fragility functions assigned based on k_y value and road type

Network Vulnerability – Functionality Loss

- Defined per network element type in terms of individual damage states
 - > Functionality capacity loss
 - Restoration duration
 - > Repair cost

<u>Network Vulnerability – Travel Delays</u>

- Regional traffic analysis
 - NEXTA traffic modelling software

Network Vulnerability - Travel Delays

- Regional traffic analysis
 - NEXTA traffic modelling software
 - > Origin-Destination data obtained from Italian 2011 census data to represent traffic demand

Network Vulnerability – Travel Delays

- Regional traffic analysis
 - NEXTA traffic modelling software
 - ➤ Origin-Destination data obtained from Italian 2011 census data to represent traffic demand
 - Simulation of post-event traffic

Network Vulnerability – Travel Delays

- National traffic analysis
 - NEXTA traffic modelling software
 - Wider impacts

Network Vulnerability – Travel Delays

National traffic analysis

NEXTA traffic modelling software

Wider impacts

Origin-Destination (O-D) data obtained from ETIS project to represent traffic demand

- Monte Carlo sampling method
 - > Epistemic uncertainty
- Direct consequences
 - > Total network repair cost

- Monte Carlo sampling method
 - > Epistemic uncertainty
- Direct consequences
 - > Total network repair cost
- Indirect consequences
 - > Average increase in travel time

Regional scale

- Monte Carlo sampling method
 - > Epistemic uncertainty
- Direct consequences
 - > Total network repair cost
- Indirect consequences
 - > Increase in average travel time

- Adequacy of risk assessment
- Determine outcome of stress test
 - Risk acceptability
 - > Interventions (i.e. repair works)

- Low probability, high consequence flood scenarios
- Cascading landslide hazard effects
- Direct and indirect consequences

- Low probability, high consequence flood scenarios
- Cascading landslide hazard effects
- Direct and indirect consequences
- Qualitative ORT application

- ORT Application
- > Identification of rail sections most at risk
- Based on principles of similarity judgement, the Delphi method and an Analytical Hierarchy Process

- Low probability, high consequence flood scenarios
- Cascading landslide hazard effects
- Direct and indirect consequences
- Qualitative ORT application
- Quantitative risk assessment

Spatial Boundaries

- 800 km of rail
- Area of 35,000 km²
- Vital link from port of Rijeka to city of Zagreb
- International connections to Slovenia and Hungry

Flood Hazard Model

- Bridge scour
- Track inundation
- Track blockages due to rainfall-triggered landslides

Flood Hazard Model - Bridge Scour

Kupa Karlovac bridge

Flood Hazard Model - Bridge Scour

- Kupa Karlovac bridge
- Historical daily max. values of water flow (m³/s)

Flood Hazard Model - Track Inundation

Linear relationship between Discharge and Water Level

Flood Hazard Model - Track Inundation

• Linear hydrodynamic modelling approach (propagation of flood wave downstream)

Water levels at t=0h
Water levels at t=24h
Water levels at t=120h

3.5

2

1.5

1

0.5

4 -2

0 2 4 6 8 10

Downstream distance (m)

× 10⁵

Rainfall Hazard Model - Rainfall Triggered Landslides

- Daily rainfall data
- Probabilistic extrapolation
- 200, 500 & 1000 yr durations

Network Vulnerability - Karlovac Bridge

- Historical daily max. values of water flow (m³/s)
- Kupa Karlovac bridge
- Scour calculation
 - > General scour
 - > Contraction scour
 - > Local scour

Network Vulnerability - Karlovac Bridge

- Development of fragility functions
 - > Three damage states defined
 - 1. Limit train speed during repair works
 - 2. Total traffic interruption during repair works
 - 3. Total collapse
 - Defined for bridges piers and abutments

Network Vulnerability - Karlovac Bridge

- Development of fragility functions
 - Three damage states defined
 - 1. Limit train speed during repair works
 - 2. Total traffic interruption during repair works
 - 3. Total collapse
 - Defined for bridges piers and abutments
 - Consideration of scour protection measures

Network Vulnerability - Track Inundation

- Visual inspection of flood hazard maps
- Susceptible rail segments identified
- Three damage states defined
 - > Slight
 - ➤ Moderate
 - > Extensive/Complete
- Fragility functions developed for:
 - > Rails on grade or in cut
 - > Rails on embankments

<u>Network Vulnerability – Landslides</u>

- Visual inspection of Google Maps
- Susceptible slopes identified
- Three damage states defined
 - > Low
 - > Medium
 - > High
- Fragility functions developed for:
 - > Different rainfall intensities

- Monte Carlo sampling method
 - Aleatoric and epistemic uncertainties₁
- Direct consequences
 - > Total network repair cost

Scour + Inundation

Monte Carlo sampling method

Aleatoric and epistemic uncertainties

- Direct consequences
 - > Total network repair cost

Rainfall Induced Landslides

- Monte Carlo sampling method
 - Aleatoric and epistemic uncertainties₁
- Direct consequences
 - > Total network repair cost
- Indirect consequences
 - >Time to repair network

Scour + Inundation

- Monte Carlo sampling method
 - Aleatoric and epistemic uncertainties,
- Direct consequences
 - > Total network repair cost
- Indirect consequences
 - >Time to repair network

Rainfall Induced Landslides

- Monte Carlo sampling method
 - Aleatoric and epistemic uncertainties
- Direct consequences
 - > Total network repair cost
- Indirect consequences
 - >Time to repair network
 - >Level of affected freight

Scour + Inundation

Monte Carlo sampling method

Aleatoric and epistemic uncertainties,

- > Total network repair cost
- Indirect consequences
 - >Time to repair network
 - >Level of affected freight
 - >Number of impacted passenger trains

Scour + Inundation

Aleatoric and epistemic uncertainties,

Direct consequences

- > Total network repair cost
- Indirect consequences
 - >Time to repair network
 - >Level of affected freight
 - >Number of impacted passenger trains

Rainfall Induced Landslides

Further Information

Deliverable 8.2 Case Study Results

FP7 2013 Cooperation Work Programme Theme 6: Environment (Including Climate change)

Novel Indicators for identifying critical **INFRA**structure at **RISK** from Natural Hazards

Website

www.infrarisk-fp7.eu

Acknowledgement

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 603960